CNNapsule: A Lightweight Network with Fusion Features for Monocular Depth Estimation

被引:1
|
作者
Wang, Yinchu [1 ]
Zhu, Haijiang [1 ]
Liu, Mengze [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] PetroChina Jidong Oilfield Co, Tangshan, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Monocular depth estimation; Matrix capsule; Fusion block;
D O I
10.1007/978-3-030-86362-3_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth estimation from 2D images is a fundamental task for many applications, for example, robotics and 3D reconstruction. Because of the weak ability to perspective transformation, the existing CNN methods have limited generalization performance and large number of parameters. To solve these problems, we propose CNNapsule network for monocular depth estimation. Firstly, we extract CNN and Matrix Capsule features. Next, we propose a Fusion Block to combine the CNN with Matrix Capsule features. Then the skip connections are used to transmit the extracted and fused features. Moreover, we design the loss function with the consideration of long-tailed distribution, gradient and structural similarity. At last, we compare our method with the existing methods on NYU Depth V2 dataset. The experiment shows that our method has higher accuracy than the traditional methods and similar networks without pre-trained. Compared with the state-of-the-art, the trainable parameters of our method decrease by 65%. In the test experiment of images collected in the Internet and real images collected by mobile phone, the generalization performance of our method is further verified.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 50 条
  • [31] A LIGHTWEIGHT SELF-SUPERVISED TRAINING FRAMEWORK FOR MONOCULAR DEPTH ESTIMATION
    Heydrich, Tim
    Yang, Yimin
    Du, Shan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2265 - 2269
  • [32] Attention based multilayer feature fusion convolutional neural network for unsupervised monocular depth estimation
    Lei, Zeyu
    Wang, Yan
    Li, Zijian
    Yang, Junyao
    NEUROCOMPUTING, 2021, 423 : 343 - 352
  • [33] Multilevel feature fusion and edge optimization network for self-supervised monocular depth estimation
    Liu, Guohua
    Niu, Shuqing
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [34] Monocular Depth Estimation Based on Multi-Scale Depth Map Fusion
    Yang, Xin
    Chang, Qingling
    Liu, Xinglin
    He, Siyuan
    Cui, Yan
    IEEE ACCESS, 2021, 9 : 67696 - 67705
  • [35] Monocular Depth Estimation Using Information Exchange Network
    Su, Wen
    Zhang, Haifeng
    Zhou, Quan
    Yang, Wenzhen
    Wang, Zengfu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3491 - 3503
  • [36] Monocular Depth Estimation With Multi-Scale Feature Fusion
    Xu, Xianfa
    Chen, Zhe
    Yin, Fuliang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 678 - 682
  • [37] Unsupervised Monocular Depth Estimation Based on Dense Feature Fusion
    Chen Ying
    Wang Yiliang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (10) : 2976 - 2984
  • [38] Monocular depth estimation with multi-scale feature fusion
    Wang Q.
    Zhang S.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (05): : 7 - 12
  • [39] Monocular depth estimation network with single-pixel depth guidance
    Lee, Hongjae
    Park, Jinbum
    Jeong, Wooseok
    Jung, Seung-won
    OPTICS LETTERS, 2023, 48 (03) : 594 - 597
  • [40] Radar Fusion Monocular Depth Estimation Based on Dual Attention
    Long, JianYu
    Huang, JinGui
    Wang, ShengChun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 166 - 179