Optimal coding of a random stimulus by a population of parallel neuron models

被引:0
|
作者
McDonnell, Mark D. [1 ,2 ]
Stocks, Nigel G. [3 ]
Abbott, Derek [1 ,2 ]
机构
[1] Univ Adelaide, Ctr Biomed Engn CBME, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
neural coding; population coding; suprathreshold stochastic resonance; information theory; noisy neurons;
D O I
10.1117/12.724618
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We examine the question of how a population of independently noisy sensory neurons should be configured to optimize the encoding of a random stimulus into sequences of neural action potentials. For the case where firing rates are the same in all neurons, we consider the problem of optimizing the noise distribution for a known stimulus distribution, and the converse problem of optimizing the stimulus for a given noise distribution. This work is related to suprathreshold stochastic resonance (SSR). It is shown that, for a large number of neurons, the SSR model is equivalent to a single rate-coding neuron with multiplicative output noise.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Mixture models achieving optimal coding regret
    Barron, AR
    Takeuchi, J
    1998 INFORMATION THEORY WORKSHOP - KILLARNEY, IRELAND, 1998, : 16 - 16
  • [42] Optimal searcher distribution for parallel random target searches
    Ro, Sunghan
    Kim, Yong Woon
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [43] Optimal Age Replacement in Parallel Systems with Random Components
    Zaeemzadeh, Motahareh
    Ahmadi, Jafar
    Astaneh, Bahareh Khatib
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2024, 31 (05)
  • [44] Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae (vol 7, 10687, 2016)
    van Giesen, Lena
    Hernandez-Nunez, Luis
    Delasoie-Baranek, Sophie
    Colombo, Martino
    Renaud, Philippe
    Bruggmann, Remy
    Benton, Richard
    Samuel, Aravinthan D. T.
    Sprecher, Simon G.
    NATURE COMMUNICATIONS, 2016, 7
  • [45] WALDS IDENTITY AND RANDOM-WALK MODELS FOR NEURON FIRING
    KRYUKOV, VI
    ADVANCES IN APPLIED PROBABILITY, 1976, 8 (02) : 257 - 277
  • [46] A new classification of neuron models for random inputs on bifurcation structures
    Hosaka, Ryosuke
    Ikeguchi, Tohru
    Sakai, Yutaka
    Yoshizawa, Shuji
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2741 - 2744
  • [47] Probability models for highly parallel image coding architecture
    Auli-Llinas, Francesc
    Bartrina-Rapesta, Joan
    Hernandez-Cabronero, Miguel
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 112
  • [48] Burst structure can code different stimulus features in thalamic neuron models
    Daniel H Elijah
    Marcelo A Montemurro
    BMC Neuroscience, 10 (Suppl 1)
  • [49] RANDOM SEARCH AND INSECT POPULATION MODELS
    ROGERS, D
    JOURNAL OF ANIMAL ECOLOGY, 1972, 41 (02) : 369 - &
  • [50] Adaptive spiking neuron with population coding for a residual spiking neural network
    Dan, Yongping
    Sun, Changhao
    Li, Hengyi
    Meng, Lin
    APPLIED INTELLIGENCE, 2025, 55 (04)