Pattern formation due to non-linear vortex diffusion

被引:2
|
作者
Wijngaarden, RJ
Surdeanu, R
Huijbregtse, JM
Rector, JH
Dam, B
Einfeld, J
Wördenweber, R
Griessen, R
机构
[1] Free Univ Amsterdam, Fac Sci, Div Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[2] Forschungszentrum Julich, Inst Schicht & Ionentech, D-52425 Julich, Germany
来源
PHYSICA C | 2000年 / 341卷
关键词
D O I
10.1016/S0921-4534(00)00765-6
中图分类号
O59 [应用物理学];
学科分类号
摘要
Penetration of magnetic flux in YBa2Cu3O7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as 'flux-rivers'. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropiate for vortices.
引用
收藏
页码:1011 / 1014
页数:4
相关论文
共 50 条
  • [21] Non-linear diffusion of cosmic rays
    Ptuskin, V. S.
    Zirakashvili, V. N.
    Plesser, A. A.
    ADVANCES IN SPACE RESEARCH, 2008, 42 (03) : 486 - 490
  • [22] SOLUTION OF A NON-LINEAR DIFFUSION EQUATION
    BABADSHANJAN, H
    GAJEWSKI, H
    MATHEMATISCHE NACHRICHTEN, 1977, 79 : 253 - 259
  • [23] A CONTRIBUTION TO THE THEORY OF NON-LINEAR DIFFUSION
    GREEN, AE
    ADKINS, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 15 (03) : 235 - 246
  • [24] Non-linear effects in diffusion on nanoscale
    Beke, DL
    Erdélyi, Z
    Szabó, IA
    Langer, GA
    Katona, GL
    Cserháti, C
    DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 1031 - 1042
  • [26] NON-LINEAR DIFFUSION OF VACANCIES IN A CRYSTAL
    HARA, H
    FUJITA, S
    WATANABE, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1979, 18 (04) : 271 - 277
  • [27] Stereo matching with non-linear diffusion
    Scharstein, D
    Szeliski, R
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 343 - 350
  • [28] Non-linear diffusion in porous media
    Auriault, JL
    Lewandowska, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1997, 324 (05): : 293 - 298
  • [29] NON-LINEAR PROBLEM OF HEAT DIFFUSION
    ANDRETAL.T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1968, 266 (17): : 1093 - &
  • [30] ON SUBSOLUTIONS OF A NON-LINEAR DIFFUSION PROBLEM
    OKRASINSKI, W
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (03) : 409 - 416