Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)

被引:129
|
作者
Cam, Gurel [1 ]
机构
[1] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Mech Engn, TR-31200 Antakya, Turkey
关键词
Additive manufacturing; Wire arc additive manufacturing (WAAM); 3-D printing; Cold metal transfer (CMT) arc welding; Net shape production; POSTDEPOSITION HEAT-TREATMENT; FRICTION-STIR WELDABILITY; LAYER COLD-WORKING; MECHANICAL-PROPERTIES; TEMPER CONDITION; RESIDUAL-STRESS; LASER; MICROSTRUCTURE; ALLOY; DEPOSITION;
D O I
10.1016/j.matpr.2022.02.137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In contrast to subtractive manufacturing processes, such as machining, and forming processes, additive manufacturing (AM), which is also called 3-D printing, direct digital manufacturing or free form fabrication, is a process of joining materials to make objects from 3D model data, usually layer by layer. Although additive manufacturing was mainly used in the production of prototypes from polymeric materials initially, the production of metallic parts with this manufacturing technology has attracted great interest in recent years. This innovative technology is commonly referred to metal additive manufacturing (MAM) and is presently being applied in various industries such as aeronautics-space, energy, automotive, medicine, various tools and customer goods. Metal parts are produced in three different ways by MAM methods. These are powder bed fusion, powder feed fusion and wire feed fusion systems. In the first two of these additive manufacturing methods, metal or alloy powders are used as raw materials, while in the third method, the filler wire made of metals or alloys is the starting material. However, metal powders, especially alloy powders, are quite costly. This in turn makes the production of metal parts using filler wire very attractive. Another advantage of wire feed additive manufacturing systems, particularly of wire arc additive manufacturing (WAAM), is its potential to produce small- and medium-sized metallic parts economically with high deposition rate. Nowadays, this innovative manufacturing technology is being considered as a promising fabrication technology for manufacturing several products from various engineering materials including aluminum and its alloys. In this paper, studies on WAAM of Al-alloy parts will be discussed. In addition, the most common defect (i.e., porosity) encountered in Al-alloy parts produced by WAAM will be considered as well as the precautions taken against its formation. Copyright (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Advances in Materials and Mechanical Engineering. (ICAMME-2022).
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [21] Vision based process monitoring in wire arc additive manufacturing (WAAM)
    Franke, Jan
    Heinrich, Florian
    Reisch, Raven T.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (03) : 1711 - 1721
  • [22] Ultracold-Wire and arc additive manufacturing (UC-WAAM)
    Rodrigues, Tiago A.
    Duarte, Valdemar R.
    Miranda, R. M.
    Santos, Telmo G.
    Oliveira, J. P.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 296 (296)
  • [23] Hot forging wire and arc additive manufacturing (HF-WAAM)
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Schell, N.
    Miranda, R. M.
    Oliveira, J. P.
    Santos, Telmo G.
    ADDITIVE MANUFACTURING, 2020, 35
  • [24] Forming accuracy improvement in wire arc additive manufacturing (WAAM): a review
    Li, Yiwen
    Dong, Zhihai
    Miao, Junyan
    Liu, Huifang
    Babkin, Aleksandr
    Chang, Yunlong
    RAPID PROTOTYPING JOURNAL, 2023, 29 (04) : 673 - 686
  • [25] Mechanical Anisotropy and Failure Analysis of Inconel 625 Parts Manufactured Using Wire and Arc Additive Manufacturing (WAAM)
    M. Karmuhilan
    Somasundaram Kumanan
    Journal of Failure Analysis and Prevention, 2024, 24 : 583 - 590
  • [26] Mechanical Anisotropy and Failure Analysis of Inconel 625 Parts Manufactured Using Wire and Arc Additive Manufacturing (WAAM)
    Karmuhilan, M.
    Kumanan, Somasundaram
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (02) : 583 - 590
  • [27] Wire and Arc Additive Manufacturing of Aluminum Components
    Koehler, Markus
    Fiebig, Sierk
    Hensel, Jonas
    Dilger, Klaus
    METALS, 2019, 9 (05)
  • [28] Thermal and microstructural analysis of intersections manufactured by wire arc additive manufacturing (WAAM)
    Sousa, Bruno Maciel
    Coelho, Fagner Guilherme Ferreira
    Macedo Junior, Givan Martins
    de Oliveira, Hellen Cristine Prata
    da Silva, Nilo Nogueira
    WELDING IN THE WORLD, 2024, 68 (07) : 1653 - 1669
  • [29] A review on aluminum alloys produced by wire arc additive manufacturing (WAAM): Applications, benefits, challenges and future trends
    Sarikaya, Murat
    Onler, Dilara Basil
    Dagli, Salih
    Hartomacioglu, Selim
    Gunay, Mustafa
    Krolczyk, Grzegorz M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5643 - 5670
  • [30] Porosity reduction in metal with hybrid wire and arc additive manufacturing technology (WAAM)
    Karlina, A. I.
    V. Kondratyev, V.
    Balanovskiy, A. E.
    Astafyeva, N. A.
    Yamshchikova, E. A.
    CIS IRON AND STEEL REVIEW, 2024, 27 : 91 - 95