NEW ASPECTS OF TIME FRACTIONAL OPTIMAL CONTROL PROBLEMS WITHIN OPERATORS WITH NONSINGULAR KERNEL

被引:81
|
作者
Yildiz, Tugba Akman [1 ]
Jajarmi, Amin [2 ]
Yildiz, Burak [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
机构
[1] Univ Turkish Aeronaut Assoc, Dept Logist Management, TR-06790 Ankara, Turkey
[2] Univ Bojnord, Dept Elect Engn, Bojnord, Iran
[3] 252 Sokak 2-5, Antalya, Turkey
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Hohai Univ, Dept Engn Mech, Inst Soft Matter Mech, Nanjing 210098, Jiangsu, Peoples R China
[6] Inst Space Sci, Magurele 077125, Romania
来源
关键词
Optimal control; nonsingular kernel; fractional calculus; error estimates; Volterra integrals; MITTAG-LEFFLER KERNEL; FORMULATION; EVOLUTION; CALCULUS;
D O I
10.3934/dcdss.2020023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a new formulation of time fractional optimal control problems governed by Caputo-Fabrizio (CF) fractional derivative. The optimality system for this problem is derived, which contains the forward and backward fractional differential equations in the sense of CF. These equations are then expressed in terms of Volterra integrals and also solved by a new numerical scheme based on approximating the Volterra integrals. The linear rate of convergence for this method is also justified theoretically. We present three illustrative examples to show the performance of this method. These examples also test the contribution of using CF derivative for dynamical constraints and we observe the efficiency of this new approach compared to the classical version of fractional operators.
引用
收藏
页码:407 / 428
页数:22
相关论文
共 50 条
  • [41] A new Lyapunov stability analysis of fractional-order systems with nonsingular kernel derivative
    Salahshour, Soheil
    Ahmadian, Ali
    Salimi, Mehdi
    Pansera, Bruno Antonio
    Ferrara, Massimiliano
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2985 - 2990
  • [42] A new fractional homotopy method for solving nonlinear optimal control problems
    Pan, Binfeng
    Ma, Yangyang
    Ni, Yang
    ACTA ASTRONAUTICA, 2019, 161 : 12 - 23
  • [43] A new Legendre operational technique for delay fractional optimal control problems
    A. H. Bhrawy
    S. S. Ezz-Eldien
    Calcolo, 2016, 53 : 521 - 543
  • [44] A New Approach to the Numerical Solution of Fractional Order Optimal Control Problems
    Akbarian, T.
    Keyanpour, M.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (02): : 523 - 534
  • [45] A new Legendre operational technique for delay fractional optimal control problems
    Bhrawy, A. H.
    Ezz-Eldien, S. S.
    CALCOLO, 2016, 53 (04) : 521 - 543
  • [46] Pareto Optimal Solutions to Fractional Optimal Control Problems
    Malinowska, Agnieszka B.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [47] On the existence of optimal solutions to fractional optimal control problems
    Kamocki, Rafal
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 94 - 104
  • [48] Solving fractional optimal control problems within a Chebyshev-Legendre operational technique
    Bhrawy, A. H.
    Ezz-Eldien, S. S.
    Doha, E. H.
    Abdelkawy, M. A.
    Baleanu, D.
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) : 1230 - 1244
  • [49] Existence of optimal solutions to Lagrange problems for ordinary control systems involving fractional Laplace operators
    Rafał Kamocki
    Optimization Letters, 2021, 15 : 779 - 801
  • [50] A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel
    Okposo, Newton I.
    Adewole, Matthew O.
    Okposo, Emamuzo N.
    Ojarikre, Herietta I.
    Abdullah, Farah A.
    CHAOS SOLITONS & FRACTALS, 2021, 152