Quantum interference in 2D atomic-scale structures

被引:13
|
作者
Crommie, MF
Lutz, CP
Eigler, DM
Heller, EJ
机构
[1] IBM CORP, ALMADEN RES CTR, DIV RES, SAN JOSE, CA 95120 USA
[2] HARVARD UNIV, DEPT PHYS, CAMBRIDGE, MA 02138 USA
[3] HARVARD UNIV, HARVARD SMITHSONIAN OBSERV, CAMBRIDGE, MA 02138 USA
关键词
adatoms; atom-solid interactions; copper; iron; quantum effects; scanning tunneling microscopy; scanning tunneling spectroscopies; surface electronic phenomena;
D O I
10.1016/0039-6028(96)00552-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrons occupying surface states on the close-packed faces of the noble metals form a two-dimensional (2D) electron gas that is accessible to the scanning tunneling microscope (STM), Using a cryogenic STM, we have observed quantum mechanical interference patterns arising from 2D electrons on the surface of Cu. These interference patterns can be artificially controlled by arranging individual Fe atoms into ''quantum corrals'' on the Cu surface, Quantum corrals behave qualitatively like 2D hard-wall boxes, but a quantitative understanding is obtained within a multiple scattering formalism. The scattering here is characterized by a complex phase shift which can be extracted from the electronic density pattern near a quantum corral.
引用
收藏
页码:864 / 869
页数:6
相关论文
共 50 条
  • [31] Superconducting quantum interference at the atomic scale
    Karan, Sujoy
    Huang, Haonan
    Padurariu, Ciprian
    Kubala, Bjoern
    Theiler, Andreas
    Black-Schaffer, Annica M.
    Morras, Gonzalo
    Levy Yeyati, Alfredo
    Carlos Cuevas, Juan
    Ankerhold, Joachim
    Kern, Klaus
    Ast, Christian R.
    NATURE PHYSICS, 2022, 18 (08) : 893 - +
  • [32] Phonon interference and thermal conductance reduction in atomic-scale metamaterials
    Han, Haoxue
    Potyomina, Lyudmila G.
    Darinskii, Alexandre A.
    Volz, Sebastian
    Kosevich, Yuriy A.
    PHYSICAL REVIEW B, 2014, 89 (18)
  • [33] 2D nanostructures at atomic scale: from energy an environmental applications to quantum devices
    Arbiol, J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E249 - E249
  • [34] Thermodynamic uncertainty relation in atomic-scale quantum conductors
    Friedman, Hava Meira
    Agarwalla, Bijay K.
    Shein-Lumbroso, Ofir
    Tal, Oren
    Segal, Dvira
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [35] Electrochemical Fabrication of Gold Quantum Wire with Atomic-Scale
    Dong, Xiaodong
    Liu, Junhua
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (05) : 2641 - 2643
  • [36] Quantum Manipulation via Atomic-Scale Magnetoelectric Effects
    Ngo, Anh T.
    Rodriguez-Laguna, Javier
    Ulloa, Sergio E.
    Kim, Eugene H.
    NANO LETTERS, 2012, 12 (01) : 13 - 16
  • [37] FABRICATION OF ATOMIC-SCALE STRUCTURES ON SI(001) SURFACES
    SALLING, CT
    LAGALLY, MG
    SCIENCE, 1994, 265 (5171) : 502 - 506
  • [38] A quantum sensor for atomic-scale electric and magnetic fields
    Esat, Taner
    Borodin, Dmitriy
    Oh, Jeongmin
    Heinrich, Andreas J.
    Tautz, F. Stefan
    Bae, Yujeong
    Temirov, Ruslan
    NATURE NANOTECHNOLOGY, 2024, 19 (10) : 1466 - 1471
  • [39] Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system
    Palacio-Morales, Alexandra
    Mascot, Eric
    Cocklin, Sagen
    Kim, Howon
    Rachel, Stephan
    Morr, Dirk K.
    Wiesendanger, Roland
    SCIENCE ADVANCES, 2019, 5 (07)
  • [40] Observing electronic scattering in atomic-scale structures on metals
    Crommie, MF
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2000, 109 (1-2) : 1 - 17