Supervised Hessian Eigenmap for Dimensionality Reduction

被引:0
|
作者
Zhang, Lianbo [1 ]
Tao, Dapeng [2 ]
Liu, Weifeng [1 ]
机构
[1] China Univ Petr East China, Coll Informat & Control Engn, Qingtao, Shandong, Peoples R China
[2] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Yunnan, Peoples R China
关键词
Manifold learning; Locally linear embedding; Hessian eigenmap; Supervised learning; SUBSPACE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hessian Eigenmap is a proposed technique for dimensionality reduction. Many methods, such as ISOMAP, LLE, Laplacian Eigenmap, have been proposed under manifold learning for dimensionality reduction. However, all these ideas have not taken the influence of different class into consideration, which limit the effectiveness of manifold learning. To take account for the influence for multiclass and improve the performance of dimensional reduction, we propose a new method, supervised Hessian LLE(SHLLE). To evaluate the proposed method, extensive experiments are conducted on the artificial dataset and real dataset (COIL-20). Our result demonstrate that the proposed method outperform HLLE method.
引用
收藏
页码:903 / 907
页数:5
相关论文
共 50 条
  • [21] Scalable Supervised Dimensionality Reduction Using Clustering
    Raeder, Troy
    Perlich, Claudia
    Dalessandro, Brian
    Stitelman, Ori
    Provost, Foster
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 1213 - 1221
  • [22] Adaptive Semi-Supervised Dimensionality Reduction
    Wei, Jia
    Wang, Jiabing
    Ma, Qianli
    Wang, Xuan
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 684 - 691
  • [23] Supervised nonlinear dimensionality reduction for visualization and classification
    Geng, X
    Zhan, DC
    Zhou, ZH
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (06): : 1098 - 1107
  • [24] Moments discriminant analysis for supervised dimensionality reduction
    Murthy, K. Ramachandra
    Ghosh, Ashish
    NEUROCOMPUTING, 2017, 237 : 114 - 132
  • [25] SUPERVISED NONLINEAR DIMENSIONALITY REDUCTION BY NEIGHBOR RETRIEVAL
    Peltonen, Jaakko
    Aidos, Helena
    Kaski, Samuel
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1809 - 1812
  • [26] EFFICIENT SUPERVISED DIMENSIONALITY REDUCTION FOR IMAGE CATEGORIZATION
    Benmokhtar, Rachid
    Delhumeau, Jonathan
    Gosselin, Philippe-Henri
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2425 - 2428
  • [27] AN INFORMATION GEOMETRIC APPROACH TO SUPERVISED DIMENSIONALITY REDUCTION
    Carter, Kevin M.
    Raich, Raviv
    Hero, Alfred O., III
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1829 - +
  • [28] Efficient Online Laplacian Eigenmap Computation for Dimensionality Reduction in Molecular Phylogeny via Optimisation on the Sphere
    Chretien, Stephane
    Guyeux, Christophe
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2019, PT I, 2019, 11465 : 441 - 452
  • [29] A new supervised Laplacian Eigenmap for expression recognition
    Li, Rui
    Zhao, Xiao
    Journal of Information and Computational Science, 2013, 10 (14): : 4445 - 4451
  • [30] A scalable supervised algorithm for dimensionality reduction on streaming data
    Yan, Jun
    Zhang, Benyu
    Yan, Shuicheng
    Liu, Ning
    Yang, Qiang
    Cheng, Qiansheng
    Li, Hua
    Chen, Zheng
    Ma, Wei-Ying
    INFORMATION SCIENCES, 2006, 176 (14) : 2042 - 2065