An analogue of Hajos' Theorem for the circular chromatic number (II)

被引:2
|
作者
Zhu, XD [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
D O I
10.1007/s00373-002-0505-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper designs a set of graph operations, and proves that for 2 less than or equal to k/d < 3, starting from K-k/d, by repeatedly applying these operations, one can construct all graphs G with χ(c)(G) ≥ k/d. Together with the result proved in [20], where a set of graph operations were designed to construct graphs G with χ(c)(G) ≥ k/d for k/d ≥ 3, we have a complete analogue of Hajos' Theorem for the circular chromatic number.
引用
收藏
页码:419 / 432
页数:14
相关论文
共 50 条
  • [31] A GENERALIZED FORM OF HAJOS THEOREM
    CORRADI, K
    SZABO, S
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) : 4119 - 4125
  • [32] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [33] Lovasz' theorem on the chromatic number of spheres revisited
    Raigorodskii, A. M.
    MATHEMATICAL NOTES, 2015, 98 (3-4) : 522 - 524
  • [34] Hajos' theorem for list coloring
    Král, D
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 161 - 163
  • [35] HAJOS THEOREM FOR MULTIPLE FACTORIZATIONS
    CORRADI, K
    SZABO, S
    ACTA MATHEMATICA HUNGARICA, 1994, 64 (03) : 305 - 308
  • [36] On the Hajos number of graphs
    Gutin, G
    Kostochka, AV
    Toft, B
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 153 - 161
  • [37] CIRCULAR CHROMATIC NUMBER OF SOME SPECIAL GRAPHS
    Gao, Wei
    Zhang, Yungang
    Yan, Chengchao
    PROCEEDINGS OF THE 2011 3RD INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION (ICFCC 2011), 2011, : 311 - +
  • [38] Circular chromatic number and a generalization of the construction of Mycielski
    Lam, PCB
    Lin, WS
    Gu, GH
    Song, ZM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (02) : 195 - 205
  • [39] Circular chromatic number for iterated Mycielski graphs
    Liu, DDF
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 335 - 340
  • [40] Upper bound on the circular chromatic number of the plane
    Junosza-Szaniawski, Konstanty
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):