Multi-robot formation control using distance and orientation

被引:16
|
作者
Lopez-Gonzalez, A. [1 ]
Ferreira, E. D. [2 ]
Hernandez-Martinez, E. G. [1 ]
Flores-Godoy, J. J. [3 ]
Fernandez-Anaya, G. [4 ]
Paniagua-Contro, P. [1 ]
机构
[1] Univ Iberoamer, Dept Ingn, Mexico City, DF, Mexico
[2] Univ Catolica Uruguay, Fac Ingn & Tecnol, Dept Ingn Elect, Montevideo, Uruguay
[3] Univ Catolica Uruguay, Dept Matemat, Fac Ingn & Tecnol, Montevideo, Uruguay
[4] Univ Iberoamer, Dept Fis & Matemat, Mexico City, DF, Mexico
关键词
Multi-robot systems; formation control; collision avoidance; decentralized control; Lyapunov stability theory;
D O I
10.1080/01691864.2016.1159143
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Formation control analyses the convergence of a group of mobile agents to predefined geometric patterns. In traditional approaches, it is assumed that each agent knows the exact position of certain members of the group with respect to a reference frame and the associated control laws are designed according to inter-robot relative positions. Designing a more decentralized scheme, this paper proposes a formation scheme, using Lyapunov techniques, considering that the local controllers of the agents can be equipped with distance and orientation sensors. The main result of the paper applies to certain distance-based potential functions with inter-robot collision avoidance and an arbitrary undirected formation graph. Also, the control law includes an integral-type control that eliminates the effects of the dead-zone of actuators in order to avoid the standard techniques of normalization. The control approach is analyzed for omnidirectional robots with numerical simulations and extended for unicycle-type robots with real-time experiments.
引用
收藏
页码:901 / 913
页数:13
相关论文
共 50 条
  • [41] Learning Decentralized Control Policies for Multi-Robot Formation
    Jiang, Chao
    Chen, Zhuo
    Guo, Yi
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 758 - 765
  • [42] Formation control for multi-robot systems with collision avoidance
    Yu, Hongjun
    Shi, Peng
    Lim, Cheng-Chew
    Wang, Dongzhe
    INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (10) : 2223 - 2234
  • [43] Distributed multi-robot formation control in dynamic environments
    Alonso-Mora, Javier
    Montijano, Eduardo
    Nageli, Tobias
    Hilliges, Otmar
    Schwager, Mac
    Rus, Daniela
    AUTONOMOUS ROBOTS, 2019, 43 (05) : 1079 - 1100
  • [44] Distributed multi-robot formation control in dynamic environments
    Javier Alonso-Mora
    Eduardo Montijano
    Tobias Nägeli
    Otmar Hilliges
    Mac Schwager
    Daniela Rus
    Autonomous Robots, 2019, 43 : 1079 - 1100
  • [45] Multi-Robot Formation Control using Collective Behavior Model and Reinforcement Learning
    Liu, Jung-Chun
    Liu, Tsung-Te
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2261 - 2265
  • [46] Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction
    Elamvazhuthi, Karthik
    Berman, Spring
    DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, 2016, 112 : 357 - 369
  • [47] Formation Control for Multi-robot System using Adaptive Kalman Filter Algorithm
    Wei, Xiancui
    Shi, Zhiguo
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 2263 - 2268
  • [48] Multi-Robot Formation Control Using Distributed Null Space Behavioral Approach
    Ahmad, Shakeel
    Feng, Zhi
    Hu, Guoqiang
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 3607 - 3612
  • [49] Goal Assignment using Distance Cost in Multi-Robot Exploration
    Faigl, Jan
    Kulich, Miroslav
    Preucil, Libor
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3741 - 3746
  • [50] Multi-robot coalition formation
    Vig, Lovekesh
    Adams, Julie A.
    IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (04) : 637 - 649