Ag-deposited Ti gas diffusion electrode in proton exchange membrane CO2 electrolyzer for CO production

被引:10
|
作者
Oh, Seonhwa [1 ]
Park, Young Sang [1 ,2 ]
Park, Hyanjoo [1 ]
Kim, Hoyoung [1 ]
Jang, Jong Hyun [2 ,3 ]
Choi, Insoo [4 ]
Kim, Soo-Kil [1 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Korea Inst Sci & Technol, Ctr Hydrogen Fuel Cell Res, 5 Hwarang Ro 14 Gil, Seoul 02792, South Korea
[3] Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[4] Kangwon Natl Univ, Div Energy Engn, 346 Jungang Ro, Samcheok 25913, South Korea
基金
新加坡国家研究基金会;
关键词
Carbon dioxide; Electrochemical reduction; Silver; Titanium; Gas diffusion electrode; Membrane electrolyzer; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; BIPOLAR MEMBRANE; CATHODE CATALYST; WATER; CONVERSION; PERFORMANCE; SYNGAS; LAYER;
D O I
10.1016/j.jiec.2019.11.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical CO2-to-CO conversion is techno-economically effective for utilizing CO2. Although numerous studies are available on CO2 conversion catalysts, many of them are limited to a half-cell or conventional H-type apparatus in aqueous mediums, providing insufficient CO2 feeding. In this study, as a part of pioneering works on gas-feeding reactors, a gas diffusion electrode consisting of a Ti substrate with affixed Ag electrocatalysts was suggested; this enables the mass conversion of CO2 via direct feeding of CO2. Herein, Ag catalysts were electrodeposited on a Ti gas diffusion layer for a proton exchange membrane-based CO2 electrolyzer. Pre-treatment of the Ti crucially influenced the deposition profile, adhesiveness, morphology, and electrochemical surface area of the Ag deposit, which influence the CO2/CO conversion efficiency of the catalyst. Pre-treatment with HCI-H2SO4 conferred the highest roughness and hydrophilicity to the Ti substrate, leading to the highest surface area of the Ag catalyst and a consequent substantial increase in the CO2/CO conversion efficiency (45% at V-cell = -2.2 V), which is a 5.7-fold increase when compared with the un-treated counterpart. The fabrication of Ag/Ti gas diffusion electrode via simple Ag electrodeposition and optimized Ti pre-treatments reported herein provides a guide for manufacturing proton exchange membrane-based CO2 electrolyzers. (C) 2019 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 382
页数:9
相关论文
共 50 条
  • [41] Modeling the Performance of A Flow-Through Gas Diffusion Electrode for Electrochemical Reduction of CO or CO2
    Chen, Yikai
    Lewis, Nathan S.
    Xiang, Chengxiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
  • [42] Linking gas diffusion electrode composition to CO2 reduction in a flow cell
    Lees, Eric W.
    Mowbray, Benjamin A. W.
    Salvatore, Danielle A.
    Simpson, Grace L.
    Dvorak, David J.
    Ren, Shaoxuan
    Chau, Jacky
    Milton, Katherine L.
    Berlinguette, Curtis P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (37) : 19493 - 19501
  • [43] Electrolysis of CO2 in a proton conducting membrane
    Ruiz-Trejo, E.
    Irvine, J. T. S.
    SOLID STATE IONICS, 2013, 252 : 157 - 164
  • [44] Boosting formate production from CO2 electroreduction over gas diffusion electrode with accessible carbon mesopores
    Han, Xiaohu
    Wang, Qinian
    Wu, Yongli
    Wu, Chao
    ELECTROCHIMICA ACTA, 2022, 402
  • [45] Gas Diffusion Electrode with Microporous Layers of Hydrophobicity Gradient Distribution for CO2 Electrolysis in a Zero-Gap Electrolyzer Operated with Pure Water
    Wan, Qiqi
    Yuan, Lei
    Jiang, Wenxing
    Liu, Yingying
    Zhang, Longhai
    Zhuang, Xiaodong
    Zhang, Junliang
    Ke, Changchun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17046 - 17052
  • [46] Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors
    Wang, Guoliang
    Pan, Jian
    Jiang, San Ping
    Yang, Hui
    JOURNAL OF CO2 UTILIZATION, 2018, 23 : 152 - 158
  • [47] Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond
    Lamaison, Sarah
    Wakerley, David
    Kracke, Frauke
    Moore, Thomas
    Zhou, Lan
    Lee, Dong Un
    Wang, Lei
    Hubert, McKenzie A.
    Aviles Acosta, Jaime E.
    Gregoire, John M.
    Duoss, Eric B.
    Baker, Sarah
    Beck, Victor A.
    Spormann, Alfred M.
    Fontecave, Marc
    Hahn, Christopher
    Jaramillo, Thomas F.
    ADVANCED MATERIALS, 2022, 34 (01)
  • [48] Electrochemical reaction of CO2 to CO on a catalyst coated cation exchange membrane enabled by ammonium proton shuttling
    Reinisch, D.
    Reichbauer, T.
    Vetter, K. M.
    Martic, N.
    Schmid, G.
    Mayrhofer, K. J. J.
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (19) : 5829 - 5840
  • [49] Study on the influence characteristics of multi-working condition parameters on membrane electrode type CO2 electrolyzer
    Zhang, Xianwen
    Peng, Hao
    Cao, Feiyue
    Cao, Yaoyi
    Liu, Qingxin
    Tang, Chizhou
    Zhou, Taotao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (12):
  • [50] Perfusion and diffusion limitations in middle ear gas exchange: The exchange of CO2 as a test case
    Marcusohn, Yael
    Ar, Amos
    Dirckx, Joris J. J.
    HEARING RESEARCH, 2010, 265 (1-2) : 11 - 14