PreMosa: extracting 2D surfaces from 3D microscopy mosaics

被引:22
|
作者
Blasse, Corinna [1 ]
Saalfeld, Stephan [2 ]
Etournay, Raphael [1 ,3 ]
Sagner, Andreas [1 ,4 ]
Eaton, Suzanne [1 ]
Myers, Eugene W. [1 ,5 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[2] Howard Hughes Med Inst, Janelia Farm Res Campus, Ashburn, VA 20147 USA
[3] Inst Pasteur, Dept Neurosci, F-75015 Paris, France
[4] Francis Crick Inst, London NW1 1AT, England
[5] Ctr Syst Biol Dresden, Dresden, Germany
关键词
CALIBRATION; IMAGES;
D O I
10.1093/bioinformatics/btx195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A significant focus of biological research is to understand the development, organization and function of tissues. A particularly productive area of study is on single layer epithelial tissues in which the adherence junctions of cells form a 2D manifold that is fluorescently labeled. Given the size of the tissue, a microscope must collect a mosaic of overlapping 3D stacks encompassing the stained surface. Downstream interpretation is greatly simplified by preprocessing such a dataset as follows: (i) extracting and mapping the stained manifold in each stack into a single 2D projection plane, (ii) correcting uneven illumination artifacts, (iii) stitching the mosaic planes into a single, large 2D image and (iv) adjusting the contrast. Results: We have developed PreMosa, an efficient, fully automatic pipeline to perform the four preprocessing tasks above resulting in a single 2D image of the stained manifold across which contrast is optimized and illumination is even. Notable features are as follows. First, the 2D projection step employs a specially developed algorithm that actually finds the manifold in the stack based on maximizing contrast, intensity and smoothness. Second, the projection step comes first, implying all subsequent tasks are more rapidly solved in 2D. And last, the mosaic melding employs an algorithm that globally adjusts contrasts amongst the 2D tiles so as to produce a seamless, high-contrast image. We conclude with an evaluation using ground-truth datasets and present results on datasets from Drosophila melanogaster wings and Schmidtae mediterranea ciliary components.
引用
收藏
页码:2563 / 2569
页数:7
相关论文
共 50 条
  • [41] Transitioning from 2D to 3D: The benefits of switching to 3D far outweigh what 2D offers
    IDSA
    不详
    Cadalyst, 2006, 9 (39-41):
  • [42] From 2D Lithography to 3D Patterning
    van Zeijl, H. W.
    Wei, J.
    Shen, C.
    Verhaar, T. M.
    Sarro, P. M.
    PROCESSING, MATERIALS, AND INTEGRATION OF DAMASCENE AND 3D INTERCONNECTS, 2010, 33 (12): : 55 - 70
  • [43] 3D from Arbitrary 2D Video
    Ideses, Ianir. A.
    Yaroslavsky, Leonid. P.
    THREE-DIMENSIONAL IMAGE CAPTURE AND APPLICATIONS VII, 2006, 6056
  • [44] SURFACE PATTERNING From 2D to 3D
    De Feyter, Steven
    NATURE CHEMISTRY, 2011, 3 (01) : 14 - 15
  • [45] The Assembly of MXenes from 2D to 3D
    Wu, Zhitan
    Shang, Tongxin
    Deng, Yaqian
    Tao, Ying
    Yang, Quan-Hong
    ADVANCED SCIENCE, 2020, 7 (07)
  • [46] Alive Caricature from 2D to 3D
    Wu, Qianyi
    Zhang, Juyong
    Lai, Yu-Kun
    Zheng, Jianmin
    Cai, Jianfei
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7336 - 7345
  • [47] Urban Geochemistry: from 2D to 3D
    Le Guern, C.
    URBAN SUBSURFACE - FROM GEOSCIENCE AND ENGINEERING TO SPATIAL PLANNING AND MANAGEMENT, 2017, 209 : 26 - 33
  • [48] From 2D to 3D: the future of surgery?
    McLachlan, Greta
    LANCET, 2011, 378 (9800): : 1368 - 1368
  • [49] 3D structure from 2D motion
    Jebara, T
    Azarbayejani, A
    Pentland, A
    IEEE SIGNAL PROCESSING MAGAZINE, 1999, 16 (03) : 66 - 84
  • [50] Building 3D Mosaics from an Autonomous Underwater Vehicle, Doppler Velocity Log, and 2D Imaging Sonar
    Ozog, Paul
    Troni, Giancarlo
    Kaess, Michael
    Eustice, Ryan M.
    Johnson-Roberson, Matthew
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1137 - 1143