Nailing of Layers: A Promising Way to Reinforce Concrete 3D Printing Structures

被引:70
|
作者
Perrot, A. [1 ]
Jacquet, Y. [1 ]
Rangeard, D. [2 ]
Courteille, E. [2 ]
Sonebi, M. [3 ]
机构
[1] Univ Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
[2] INSA Rennes, LGCGM, EA 3913, F-35000 Rennes, France
[3] Queens Univ Belfast, Sch Nat & Built Environm, Belfast B17 1NN, Antrim, North Ireland
关键词
cement-based materials; rheology; 3D printing; additive manufacturing; reinforcement; DIGITAL FABRICATION; CONSTRUCTION; THIXOTROPY; EVOLUTION; STRENGTH; BUILDUP; SCC;
D O I
10.3390/ma13071518
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Today, the extrusion-based 3D printing of concrete is a potential breakthrough technology for the construction industry. It is expected that 3D printing will reduce the cost of construction of civil engineering structures (removal of formwork) and lead to a significant reduction in time and improve working environment conditions. Following the use of this additive manufacturing layer-wise process, it is required to change the way concrete structures are designed and reinforced, especially for the parts of the structure under tension loads. Indeed, the extrusion-based concrete 3D printing process does not allow for the production of conventional reinforced concrete, and there is a need to develop other ways of compensating for the low mechanical performances of concrete, particularly in tension. In this study, the reinforcement of printed structures by using steel nails through the deposited layers of fresh concrete was investigated. Additionally, three-layer and 10-layer samples were reinforced with nails with varying inclination and spacing. The results show that inclined nails can be used to provide a flexural strengthening of the printing material in different directions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Influence of Printing Pattern on Bearing Capacity of 3D Printed Concrete Hollow Structures
    Chen, Zhaohui
    Wang, Zhenyue
    Liao, Minmao
    Sun, Junbo
    Sun, Xiao
    CONSTRUCTION 3D PRINTING, 4-IC3DCP CONFERENCE 2023, 2024, : 26 - 31
  • [32] Learning from historical structures under compression for concrete 3D printing construction
    Duarte, Goncalo
    Brown, Nathan
    Memari, Ali
    Duarte, Jose Pinto
    JOURNAL OF BUILDING ENGINEERING, 2021, 43
  • [33] Learning from historical structures under compression for concrete 3D printing construction
    Duarte, Gonçalo
    Brown, Nathan
    Memari, Ali
    Duarte, José Pinto
    Journal of Building Engineering, 2021, 43
  • [34] Stress-cognizant 3D printing of free-form concrete structures
    Lim, Jian Hui
    Zhang, Xu
    Ting, Guan Heng Andrew
    Quang-Cuong Pham
    JOURNAL OF BUILDING ENGINEERING, 2021, 39
  • [35] Concrete Printing in Architecture A research on the potential benefits of 3D Concrete Printing in Architecture
    Marijnissen, Marjolein P. A. M.
    van der Zee, Aant
    ECAADE 2017: SHARING OF COMPUTABLE KNOWLEDGE! (SHOCK!), VOL 2, 2017, : 299 - 308
  • [36] Differences between 3D printed concrete and 3D printing reinforced concrete technologies: a review
    Momeni, Komeil
    Vatin, Nikolai Ivanovich
    Hematibahar, Mohammad
    Gebre, Tesfaldet Hadgembes
    FRONTIERS IN BUILT ENVIRONMENT, 2025, 10
  • [37] 3D PRINTING STRUCTURES THAT EXHIBIT TORSIONS
    Noh, Kyoung-Seok
    Seo, Hae-Won
    Lee, Yong-Gu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 501 - 506
  • [38] Making Porous Structures 3D printing
    不详
    CURRENT SCIENCE, 2021, 120 (10): : 1553 - 1553
  • [39] 3D Printing multifunctionality: structures with electronics
    David Espalin
    Danny W. Muse
    Eric MacDonald
    Ryan B. Wicker
    The International Journal of Advanced Manufacturing Technology, 2014, 72 : 963 - 978
  • [40] 3D printing of nano and micro structures
    Ramasamy, Mouli
    Varadan, Vijay K.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2016, 2016, 9802