The set of realizations of a max-plus linear sequence is semi-polyhedral

被引:1
|
作者
Blondel, Vincent [2 ]
Gaubert, Stephane [3 ,4 ]
Portier, Natacha [1 ,5 ]
机构
[1] Univ Lyon, LIP, Ecole Normale Super Lyon, CNRS,UCBL,INRIA,ENS Lyon,UMR 5668, F-69364 Lyon 07, France
[2] Catholic Univ Louvain, Dept Ingn Math, Large Graphs & Networks, B-1348 Louvain, Belgium
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[4] Ecole Polytech, INRIA, F-91128 Palaiseau, France
[5] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
Max-plus algebra; Minimal realization; Discrete event systems; Semi-polyhedral set; Formal series; Semiring; DISCRETE-EVENT SYSTEMS; PERFORMANCE EVALUATION; DYNAMIC-SYSTEMS; GEOMETRY;
D O I
10.1016/j.jcss.2010.08.010
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a finite union of polyhedral sets. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:820 / 833
页数:14
相关论文
共 50 条
  • [41] Framework for Studying Stability of Switching Max-Plus Linear Systems
    Gupta, Abhimanyu
    van den Boom, Ton
    van der Woude, Jacob
    De Schutter, Bart
    IFAC PAPERSONLINE, 2020, 53 (04): : 68 - 74
  • [42] Logic-based Solvability of Max-plus Linear Equations
    Chen Qi
    Li Haitao
    Li Ping
    Yang Xinrong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1283 - 1288
  • [43] Stochastic Filtering of Max-Plus Linear Systems With Bounded Disturbances
    Mendes, Rafael Santos
    Hardouin, Laurent
    Lhommeau, Mehdi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3706 - 3715
  • [44] Optimal input design for uncertain max-plus linear systems
    Wang, Cailu
    Tao, Yuegang
    Yan, Huaicheng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (16) : 4816 - 4830
  • [45] On the control of max-plus linear system subject to state restriction
    Maia, C. A.
    Andrade, C. R.
    Hardouin, L.
    AUTOMATICA, 2011, 47 (05) : 988 - 992
  • [46] Observer-Based Controllers for Max-Plus Linear Systems
    Hardouin, Laurent
    Shang, Ying
    Maia, Carlos Andrey
    Cottenceau, Bertrand
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) : 2153 - 2165
  • [47] On Max-plus linear dynamical system theory: The observation problem
    Goncalves, Vinicius Mariano
    Maia, Carlos Andrey
    Hardouin, Laurent
    AUTOMATICA, 2019, 107 : 103 - 111
  • [48] State geometric adjustability for interval max-plus linear systems
    Yin, Yingxuan
    Chen, Haiyong
    Tao, Yuegang
    IET CONTROL THEORY AND APPLICATIONS, 2024, 18 (17): : 2468 - 2481
  • [49] The level set method for the two-sided max-plus eigenproblem
    Stéphane Gaubert
    Sergeĭ Sergeev
    Discrete Event Dynamic Systems, 2013, 23 : 105 - 134
  • [50] The level set method for the two-sided max-plus eigenproblem
    Gaubert, Stephane
    Sergeev, Sergei
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2013, 23 (02): : 105 - 134