The set of realizations of a max-plus linear sequence is semi-polyhedral

被引:1
|
作者
Blondel, Vincent [2 ]
Gaubert, Stephane [3 ,4 ]
Portier, Natacha [1 ,5 ]
机构
[1] Univ Lyon, LIP, Ecole Normale Super Lyon, CNRS,UCBL,INRIA,ENS Lyon,UMR 5668, F-69364 Lyon 07, France
[2] Catholic Univ Louvain, Dept Ingn Math, Large Graphs & Networks, B-1348 Louvain, Belgium
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[4] Ecole Polytech, INRIA, F-91128 Palaiseau, France
[5] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
Max-plus algebra; Minimal realization; Discrete event systems; Semi-polyhedral set; Formal series; Semiring; DISCRETE-EVENT SYSTEMS; PERFORMANCE EVALUATION; DYNAMIC-SYSTEMS; GEOMETRY;
D O I
10.1016/j.jcss.2010.08.010
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a finite union of polyhedral sets. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:820 / 833
页数:14
相关论文
共 50 条
  • [1] On the set-estimation of uncertain Max-Plus Linear systems
    Espindola-Winck, Guilherme
    Hardouin, Laurent
    Lhommeau, Mehdi
    AUTOMATICA, 2025, 171
  • [2] Max-plus algebra and max-plus linear discrete event systems: An introduction
    De Schutter, Bart
    van den Boom, Ton
    WODES' 08: PROCEEDINGS OF THE 9TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, 2008, : 36 - 42
  • [3] Closure of the simple image set of linear mapping interval max-plus
    Siswanto
    Kurniawan, Vika Yugi
    Pangadi
    Santoso, B. W.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (07): : 1465 - 1473
  • [4] Semigroups of max-plus linear operators
    Marjeta Kramar Fijavž
    Aljoša Peperko
    Eszter Sikolya
    Semigroup Forum, 2017, 94 : 463 - 476
  • [5] Semigroups of max-plus linear operators
    Fijavz, Marjeta Kramar
    Peperko, Aljosa
    Sikolya, Eszter
    SEMIGROUP FORUM, 2017, 94 (02) : 463 - 476
  • [6] On the eigenstructure of a class of max-plus linear systems
    Lopes, G. A. D.
    Kersbergen, B.
    van den Boom, T.
    De Schutter, B.
    Babuska, R.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1823 - 1828
  • [7] Erratum to: Semigroups of max-plus linear operators
    Boris Andreianov
    Marjeta Kramar Fijavž
    Aljoša Peperko
    Eszter Sikolya
    Semigroup Forum, 2017, 94 : 477 - 479
  • [8] On integer images of max-plus linear mappings
    Butkovic, Peter
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 62 - 74
  • [9] Tropical Abstractions of Max-Plus Linear Systems
    Mufid, Muhammad Syifa'ul
    Adzkiya, Dieky
    Abate, Alessandro
    FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS, FORMATS 2018, 2018, 11022 : 271 - 287
  • [10] Reachability for Interval Max-Plus Linear Systems
    Wang, Cailu
    Tao, Yuegang
    Yang, Peng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2392 - 2396