On discrete fractional integral operators and related Diophantine equations

被引:3
|
作者
Kim, Jongchon [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
MEAN-VALUE THEOREM;
D O I
10.4310/MRL.2015.v22.n3.a11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study discrete versions of fractional integral operators along curves and surfaces. l(p) -> l(q) estimates are obtained from upper bounds of the number of solutions of associated Diophantine systems. In particular, this relates the discrete fractional integral along the curve gamma(m) = (m, m(2), . . . , m(k)) to Vinogradov's mean value theorem. Sharp l(p) -> l(q) estimates of the discrete fractional integral along the hyperbolic paraboloid in Z(3) are also obtained except for endpoints.
引用
收藏
页码:841 / 857
页数:17
相关论文
共 50 条
  • [41] Solving nonlinear fractional equations and some related integral equations under a measure of noncompactness
    Hammad, Hasanen A.
    Aydi, Hassen
    de la sen, Manuel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [42] ON SOME INTEGRAL EQUATIONS WITH NORMAL INTEGRAL OPERATORS
    INOUE, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (08): : 708 - &
  • [43] Indecomposability of polynomials and related diophantine equations
    Dujella, Andrej
    Gusic, Ivica
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 193 - 201
  • [44] Diophantine equations related to quasicrystals: A note
    E. Pelantová
    A. M. Perelomov
    Theoretical and Mathematical Physics, 1998, 115 : 737 - 738
  • [45] RESPONSE FUNCTIONS IN LINEAR VISCOELASTIC CONSTITUTIVE EQUATIONS AND RELATED FRACTIONAL OPERATORS
    Hristov, Jordan
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (03)
  • [46] Stability results for fractional integral pantograph differential equations involving two Caputo operators
    Moumen, Abdelkader
    Shafqat, Ramsha
    Hammouch, Zakia
    Niazi, Azmat Ullah Khan
    Jeelani, Mdi Begum
    AIMS MATHEMATICS, 2023, 8 (03): : 6009 - 6025
  • [47] BOUNDEDNESS OF GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Tang Canqin (Changde Normal University
    ApproximationTheoryandItsApplications, 2002, (04) : 38 - 54
  • [48] Compactness Criteria for Fractional Integral Operators
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1269 - 1283
  • [49] Variable anisotropic fractional integral operators
    B. D. Li
    J. W. Sun
    Z. Z. Yang
    Acta Mathematica Hungarica, 2023, 170 (2) : 483 - 498
  • [50] Diophantine equations related to quasicrystals: A note
    Pelantova, E
    Perelomov, AM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (03) : 737 - 739