The (2+1)-dimensional hyperbolic nonlinear Schrodinger equation and its optical solitons

被引:18
|
作者
Baleanu, Umitru [1 ,2 ,3 ]
Hosseini, Kamyar [4 ]
Salahshour, Soheil [5 ]
Sadri, Khadijeh [4 ]
Mirzazadeh, Mohammad [6 ]
Park, Choonkil [7 ]
Ahmadian, Ali [8 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, Taichung 40447, Taiwan
[4] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[6] Univ Guilan, Dept Engn Sci, Fac Technol & Engn, Rudsar Vajargah 4489163157, Iran
[7] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[8] Natl Univ Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
关键词
(2+1)-dimensional hyperbolic nonlinear Schrodinger equation; electromagnetic fields; traveling wave transformation; exponential and Kudryashov methods; bright and dark solitons; MODEL;
D O I
10.3934/math.2021556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrodinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential (1D-NLOD) equation in the real regime using a traveling wave transformation, its optical solitons are formally obtained through a group of well-established methods such as the exponential and Kudryashov methods. Some graphical representations regarding optical solitons that are categorized as bright and dark solitons are considered to clarify the dynamics of the obtained solutions. It is noted that some of optical solitons retrieved in the current study are new and have been not retrieved previously.
引用
收藏
页码:9568 / 9581
页数:14
相关论文
共 50 条
  • [21] Solitons, rogue waves and breather solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients
    Hamed, A. A.
    Kader, A. H. Abdel
    Latif, M. S. Abdel
    OPTIK, 2020, 216
  • [22] Optical solitons of the (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersion in quadratic-cubic media
    Zhao, Ya-nan
    Guo, Li-feng
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [23] Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrodinger equation
    Nistazakis, HE
    Frantzeskakis, DJ
    Balourdos, PS
    Tsigopoulos, A
    Malomed, BA
    PHYSICS LETTERS A, 2000, 278 (1-2) : 68 - 76
  • [24] On the Whitham system for the (2+1)-dimensional nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Cole, Justin T.
    Rumanov, Igor
    STUDIES IN APPLIED MATHEMATICS, 2023, 150 (02) : 380 - 419
  • [25] Dark solitons interaction for a (2+1)-dimensional nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Zhao, Xue-Hui
    Tian, Bo
    Liu, De-Yin
    Wu, Xiao-Yu
    Chai, Jun
    Guo, Yong-Jiang
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 587 - 595
  • [26] The bright and singular solitons of (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersions
    Akinyemi, Lanre
    Hosseini, Kamyar
    Salahshour, Soheil
    OPTIK, 2021, 242
  • [27] On short-range pulse propagation described by (2+1)-dimensional Schrodinger's hyperbolic equation in nonlinear optical fibers
    Ali, Khalid K.
    Wazwaz, Abdul-Majid
    Mehanna, M. S.
    Osman, M. S.
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [28] Excitation of optical rogue waves to a (2+1)-dimensional nonlinear Schrodinger equation in nonlocal optical fibers
    Li, Bang-Qing
    Ma, Yu-Lan
    OPTIK, 2018, 174 : 178 - 184
  • [29] BI-SOLITONS, BREATHER SOLUTION FAMILY AND ROGUE WAVES FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
    Liu, Changfu
    Chen, Min
    Zhou, Ping
    Chen, Longwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (02): : 367 - 375
  • [30] An integrable (2+1)-dimensional nonlinear Schrodinger system and its optical soliton solutions
    Hosseini, K.
    Sadri, K.
    Mirzazadeh, M.
    Salahshour, S.
    OPTIK, 2021, 229