Nonparametric regression with sample design following a random process

被引:1
|
作者
Chicken, Eric [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
关键词
adaptive; Holder class; nonparametric regression; thresholding; wavelets;
D O I
10.1080/03610920601126498
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression is considered where the sample point placement is not fixed and equispaced, but generated by a random process with rate n. Conditions are found for the random processes that result in optimal rates of convergence for nonparametric regression when using a block thresholded wavelet estimator. Previous results on nonparametric regression via wavelets on both fixed and random sample point placement are shown to be special cases of the general result given here. The estimator is adaptive over a large range of Holder function spaces and the convergence rate exhibited is an improvement over term-by-tenn wavelet estimators. Threshold selection is implemented in a data-adaptive fashion, rather than using a fixed threshold as is usually done in block thresholding. This estimator, BlockSure, is compared against fixed-threshold block estimators and the more traditional term-by-term threshold wavelet estimators on several random design schemes via simulations.
引用
收藏
页码:1915 / 1934
页数:20
相关论文
共 50 条
  • [31] Testing additivity in nonparametric regression under random censorship
    Debbarh, Mohammed
    Viallon, Vivian
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2584 - 2591
  • [32] Bayesian nonparametric binary regression via random tessellations
    Trippa, Lorenzo
    Muliere, Pietro
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (21) : 2273 - 2280
  • [33] DERIVATIVE ESTIMATION IN NONPARAMETRIC REGRESSION WITH RANDOM PREDICTOR VARIABLE
    MACK, YP
    MULLER, HG
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1989, 51 : 59 - 72
  • [34] Nonparametric relative error regression for spatial random variables
    Attouch, Mohammed
    Laksaci, Ali
    Messabihi, Nafissa
    STATISTICAL PAPERS, 2017, 58 (04) : 987 - 1008
  • [35] Nonparametric relative error regression for spatial random variables
    Mohammed Attouch
    Ali Laksaci
    Nafissa Messabihi
    Statistical Papers, 2017, 58 : 987 - 1008
  • [36] Missing at random (MAR) in nonparametric regression - A simulation experiment
    Thomas Nittner
    Statistical Methods and Applications, 2003, 12 (2) : 195 - 210
  • [37] Nonparametric Estimations about Species Not Observed in a Random Sample
    Alberto Gandolfi
    C. C. A. Sastri
    Milan Journal of Mathematics, 2004, 72 (1) : 81 - 105
  • [38] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [39] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [40] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163