Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors

被引:24
|
作者
Lin, L. [1 ]
Zhen, H. L. [1 ]
Li, N. [1 ]
Lu, W. [1 ]
Weng, Q. C. [2 ]
Xiong, D. Y. [2 ]
Liu, F. Q. [3 ]
机构
[1] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] E China Normal Univ, Key Lab Polarized Mat & Devices, Shanghai 200241, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
DETECTORS;
D O I
10.1063/1.3517253
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517253]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] ANALYSIS OF THE DARK CURRENT IN DOPED-WELL MULTIPLE QUANTUM WELL ALGAAS INFRARED PHOTODETECTORS
    PELVE, E
    BELTRAM, F
    BETHEA, CG
    LEVINE, BF
    SHEN, VO
    HSIEH, SJ
    ABBOTT, RR
    JOURNAL OF APPLIED PHYSICS, 1989, 66 (11) : 5656 - 5658
  • [22] Effects of Si doping on normal incidence InAs/In0.15Ga0.85As dots-in-well quantum dot infrared photodetectors
    Attaluri, R. S.
    Annamalai, S.
    Posani, K. T.
    Stintz, A.
    Krishna, S.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [23] Progress and Prospects for Quantum Dots in a Well Infrared Photodetectors
    Vandervelde, Thomas E.
    Krishna, Sanjay
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (03) : 1450 - 1460
  • [24] Performance Improvement of Quantum Well Infrared Photodetectors Through Dark Current Reduction Factor
    El Tokhy, Mohamed S.
    Ali, Elsayed H.
    Polyutov, Sergey P.
    IETE JOURNAL OF RESEARCH, 2023, 69 (04) : 1726 - 1733
  • [25] Quantum Well Infrared Photodetectors (QWIPs) Optimization Based on Dark Current Models Evaluation
    Favero, Priscila P.
    Tanaka, Roberto Y.
    Vieira, Gustavo S.
    Muraro, Ademar, Jr.
    Abe, Nancy M.
    Passaro, Angelo
    15TH INTERNATIONAL CONFERENCE ON NARROW GAP SYSTEMS (NGS15), 2011, 1416 : 161 - 164
  • [26] Analysis of dark current characteristics of novel GaAs/AlGaAs quantum well infrared photodetectors
    Shi, Yan-Li
    Deng, Jun
    Du, Jin-Yu
    Lian, Peng
    Gao, Guo
    Chen, Jian-Xin
    Shen, Guang-Di
    Yin, Jie
    Wu, Xing-Hui
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2001, 22 (04): : 503 - 506
  • [27] Design issues relating to low temperature dark current in quantum well infrared photodetectors
    Singh, A
    Cardimona, DA
    PHOTODETECTORS: MATERIALS AND DEVICES II, 1997, 2999 : 46 - 54
  • [28] Influence of the recharging process on the dark current noise in quantum-well infrared photodetectors
    Rehm, R
    Schneider, H
    Walther, M
    Koidl, P
    APPLIED PHYSICS LETTERS, 2002, 80 (05) : 862 - 864
  • [29] Effect of in interdiffusion on dark current response of GaInP/GaAs quantum well infrared photodetectors
    Micallef, J
    Brincat, A
    ELECTRONICS LETTERS, 1999, 35 (19) : 1662 - 1664
  • [30] Offset in the dark current characteristics of photovoltaic double barrier quantum well infrared photodetectors
    Luna, E
    Guzmán, A
    Muñoz, E
    INFRARED PHYSICS & TECHNOLOGY, 2005, 47 (1-2) : 22 - 28