The maximum of Brownian motion with parabolic drift

被引:13
|
作者
Janson, Svante [1 ]
Louchard, Guy [2 ]
Martin-Lof, Anders [3 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Univ Libre Bruxelles, Dept Informat, B-1050 Brussels, Belgium
[3] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
来源
关键词
Brownian motion; parabolic drift; Airy functions; MEAN PATH; INTEGRALS; SIZE; TIME;
D O I
10.1214/EJP.v15-830
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the maximum of a Brownian motion with a parabolic drift; this is a random variable that often occurs as a limit of the maximum of discrete processes whose expectations have a maximum at an interior point. We give new series expansions and integral formulas for the distribution and the first two moments, together with numerical values to high precision.
引用
收藏
页码:1893 / 1929
页数:37
相关论文
共 50 条
  • [31] On the maximum drawdown of a Brownian motion
    Magdon-Ismail, M
    Atiya, AF
    Pratap, A
    Abu-Mostafa, YS
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (01) : 147 - 161
  • [32] The maximum drawdown of the Brownian motion
    Magdon-Ismail, M
    Atiya, A
    Pratap, A
    Abu-Mostafa, Y
    2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS, 2003, : 243 - 247
  • [33] Estimators for the Drift of Subfractional Brownian Motion
    Shen, Guangjun
    Yan, Litan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1601 - 1612
  • [34] Minkowski dimension of Brownian motion with drift
    Charmoy, Philippe H. A.
    Peres, Yuval
    Sousi, Perla
    JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (02) : 153 - 176
  • [35] Estimation of the drift of fractional Brownian motion
    Es-Sebaiy, Khalifa
    Ouassou, Idir
    Ouknine, Youssef
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (14) : 1647 - 1653
  • [36] Reflected Brownian motion with drift in a wedge
    Lakner, Peter
    Liu, Ziran
    Reed, Josh
    QUEUEING SYSTEMS, 2023, 105 (3-4) : 233 - 270
  • [37] Some inequalities for Brownian motion with a drift
    Goldaeva, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (06) : 1224 - 1225
  • [38] BROWNIAN-MOTION WITH POLAR DRIFT
    WILLIAMS, RJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) : 225 - 246
  • [39] Reflected Brownian motion with drift in a wedge
    Peter Lakner
    Ziran Liu
    Josh Reed
    Queueing Systems, 2023, 105 : 233 - 270
  • [40] An asymptotic estimate for Brownian motion with drift
    McGill, Paul
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1164 - 1169