Grobner-Shirshov Bases for Exceptional Lie Superalgebras

被引:1
|
作者
Lee, Dong-il [1 ]
机构
[1] Seoul Womens Univ, Dept Math, Seoul 139774, South Korea
关键词
Grobner-Shirshov basis; Lie superalgebra; super-Lyndon-Shirshov monomial; CASTELNUOVO-MUMFORD REGULARITY; ALGEBRAS; REPRESENTATIONS; RING;
D O I
10.1142/S1005386715000024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For exceptional Lie superalgebras D(2, 1; alpha), G(3) and F(4), Grobner-Shirshov bases and the corresponding super-Lyndon-Shirshov monomial bases are constructed.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Grobner-Shirshov Bases Theory for Trialgebras
    Huang, Juwei
    Chen, Yuqun
    MATHEMATICS, 2021, 9 (11)
  • [22] Grobner-Shirshov Bases for Plactic Algebras
    Kubat, Lukasz
    Okninski, Jan
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 591 - 596
  • [23] Grobner-Shirshov bases for commutative dialgebras
    Chen, Yuqun
    Zhang, Guangliang
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1671 - 1689
  • [24] Grobner-Shirshov bases for Coxeter groups
    Bokut, LA
    Shiao, LS
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 4305 - 4319
  • [25] Grobner-Shirshov Bases for Extensions of Algebras
    Chen, Yuqun
    ALGEBRA COLLOQUIUM, 2009, 16 (02) : 283 - 292
  • [26] Grobner-Shirshov Bases for Replicated Algebras
    Kolesnikov, P. S.
    ALGEBRA COLLOQUIUM, 2017, 24 (04) : 563 - 576
  • [27] GROBNER-SHIRSHOV BASES AND EMBEDDINGS OF ALGEBRAS
    Bokut, L. A.
    Chen, Yuqun
    Mo, Qiuhui
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (07) : 875 - 900
  • [28] Grobner-Shirshov bases for relations of a Lie algebra and its enveloping algebra
    Bokut, LA
    Malcolmson, P
    ALGEBRAS AND COMBINATORICS, 1999, : 47 - 54
  • [29] Grobner-Shirshov bases for Lie Ω-algebras and free Rota-Baxter Lie algebras
    Qiu, Jianjun
    Chen, Yuqun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [30] Free Lie differential Rota-Baxter algebras and Grobner-Shirshov bases
    Qiu, Jianjun
    Chen, Yuqun
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (08) : 1041 - 1060