Prediction of chaotic behavior

被引:21
|
作者
Oguchi, T [1 ]
Nijmeijer, H
机构
[1] Tokyo Metropolitan Univ, Grad Sch Engn, Dept Mech Engn, Tokyo 1920397, Japan
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
complex systems; state prediction; synchronization; time delay;
D O I
10.1109/TCSI.2005.853396
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the prediction of chaotic behavior using a master-slave synchronization scheme. Based on the stability theory for retarded systems using a Lyapunov-Krasovskii functional, we derive a sufficient condition for perfect state prediction of the master system via a time-delayed output signal of the slave system. The obtained result is based on the delay-dependent stability of time-delay systems. In addition, we derive an upper bound of the admissible time delay by using linear matrix inequality techniques. Finally, we show the effectiveness of the proposed predictor by two numerical examples.
引用
收藏
页码:2464 / 2472
页数:9
相关论文
共 50 条
  • [21] SINGAPORE RAINFALL BEHAVIOR: CHAOTIC?
    Sivakumar, Bellie
    Liong, Shie-Yui
    Liaw, Chih-Young
    Phoon, Kok-Kwang
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (01) : 38 - 48
  • [22] Stabilizing Chaotic Behavior of RED
    Duran, Guillem
    Valero Cuadra, Jose
    Amigo Garcia, Jose Maria
    Gimenez Pastor, Angel
    Martinez Bonastre, Oscar
    2018 IEEE 26TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2018, : 241 - 242
  • [23] ELECTROCHEMICAL OSCILLATORS - CHAOTIC BEHAVIOR
    HUDSON, JL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 148 - PHYS
  • [24] CHAOTIC BEHAVIOR OF MICROWAVE CIRCUITS
    SOBHY, MI
    BUTCHER, NA
    NASSER, AAA
    19TH EUROPEAN MICROWAVE CONFERENCE : MICROWAVE 89, 1989, : 363 - 368
  • [25] Chaotic behavior in manufacturing systems
    Alfaro, MD
    Sepulveda, JM
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2006, 101 (01) : 150 - 158
  • [26] CHAOTIC BEHAVIOR IN THE TAYLOR MAPPING
    ZHOU, JY
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (01): : 47 - 60
  • [27] Chaotic behavior in parametric oscillations
    Tatsuta, Fujio
    Tadokoro, Mutsuo
    Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 1994, 114 (08): : 129 - 139
  • [28] Chaotic behavior in a learning model
    Grau-Sanchez, M.
    Noguera, M.
    Peris, J. M.
    Diaz-Barrero, J. L.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 414 - 422
  • [29] CHAOTIC BEHAVIOR IN SPHALERON SOLUTION
    KAWABE, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : L1131 - L1137
  • [30] CHAOTIC BEHAVIOR IN EXCITABLE SYSTEMS
    HOLDEN, AV
    LAB, MJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1990, 591 : 303 - 315