Non-linear Gaussian sovereign CDS pricing models

被引:0
|
作者
Realdon, Marco [1 ]
机构
[1] Swansea Univ, Swansea Sch Management, Bay Campus,Fabian Way, Swansea SA1 8EN, W Glam, Wales
关键词
Sovereign CDS pricing; Discrete time quadratic model; Black model; Black-Karasinski model; Method of lines; Extended Kalman Filter; DEFAULT RISK; RECOVERY RATES; TERM STRUCTURE; MARKET;
D O I
10.1080/14697688.2018.1459808
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Prior literature indicates that quadratic models and the Black-Karasinski model are very promising for CDS pricing. This paper extends these models and the Black [J. Finance 1995, 50, 1371-1376] model for pricing sovereign CDS's. For all 10 sovereigns in the sample quadratic models best fit CDS spreads in-sample, and a four factor quadratic model can account for the joint effects on CDS spreads of default risk, default loss risk and liquidity risk with no restriction to factors correlation. Liquidity risk appears to affect sovereign CDS spreads. However, quadratic models tend to over-fit some CDS maturities at the expense of other maturities, while the BK model is particularly immune from this tendency. The Black model seems preferable because its out-of-sample performance in the time series dimension is the best.
引用
收藏
页码:191 / 210
页数:20
相关论文
共 50 条
  • [41] THEORY OF NON-LINEAR GAUSSIAN-NOISE
    MIGUEL, MS
    SANCHO, JM
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (04): : 361 - 372
  • [42] Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    Lawrence, N
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1783 - 1816
  • [43] Linear and non-linear symmetry properties of Gaussian wave packets
    Rivera, A. L.
    Castano, V. M.
    OPTIK, 2010, 121 (06): : 539 - 552
  • [44] MEASUREMENT OF COEFFICIENTS OF NON-LINEAR REFRACTIVE-INDEX IN CDS CRYSTALS BY NON-LINEAR REFRACTION METHOD
    BORSHCH, AA
    BRODIN, MS
    KRUPA, NN
    LUKOMSKY, VP
    PISARENKO, VG
    PETROPAVLOVSKY, AI
    CHERNY, VV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 75 (01): : 82 - 87
  • [45] Non-linear optical property of nano composite CdS
    Galyaviev, I. G.
    Safiullin, G. M.
    Nikiforov, V. G.
    Lobkov, V. S.
    Nassar, I. M.
    Galyametdinov, U. G.
    ICONO 2010: INTERNATIONAL CONFERENCE ON COHERENT AND NONLINEAR OPTICS, 2011, 7993
  • [46] Linear or non-linear models for percutaneous absorption?
    Moss, G. P.
    Sun, Y.
    Davey, N.
    Wilkinson, S. C.
    Brown, M. B.
    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, 2015, 37 (01) : 144 - 144
  • [47] Linear and non-linear models of brain interactions
    Büchel, C
    BIOLOGICAL PSYCHIATRY, 2000, 47 (08) : 64S - 64S
  • [48] TESTING LINEAR RESTRICTIONS ON NON-LINEAR MODELS
    SAWYER, KR
    ROSALSKY, MC
    ECONOMICS LETTERS, 1984, 15 (1-2) : 91 - 96
  • [49] INVESTIGATION OF NON-LINEAR ELECTRONIC ABSORPTION OF SOUND IN CDS
    MIRGORODSKII, VI
    PROKLOV, VV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1978, 12 (03): : 334 - 336
  • [50] Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models
    Ng, Jason
    Forbes, Catherine S.
    Martin, Gael M.
    McCabe, Brendan P. M.
    INTERNATIONAL JOURNAL OF FORECASTING, 2013, 29 (03) : 411 - 430