Fracture and friction: Stick-slip motion

被引:27
|
作者
Brener, EA
Malinin, SV
Marchenko, VI
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-5170 Julich, Germany
[2] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia
[3] RAS, PL Kapitza Inst Phys Problems, Moscow 119334, Russia
来源
EUROPEAN PHYSICAL JOURNAL E | 2005年 / 17卷 / 01期
关键词
D O I
10.1140/epje/i2004-10112-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first-order phase transitions we discuss a "soft" selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as functions of the driving velocity. The relevance of our results to recent experiments is discussed.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [21] DYNAMIC STICK-SLIP MOTION WITH SLIDING VELOCITY-DEPENDENT FRICTION
    IONESCU, I
    PAUMIER, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (01): : 121 - 125
  • [22] Stick-Slip Motion and Static Friction in a Nonlinear Deformable Substrate Potential
    Motchongom-Tingue, M.
    Kenmoe, G. Djuidje
    Kofane, T. C.
    TRIBOLOGY LETTERS, 2011, 43 (01) : 65 - 72
  • [23] Analysis of stick-slip motion by the rate-dependent friction model
    Ozaki, S.
    Hashiguchi, K.
    Chen, D. H.
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 867 - +
  • [24] Rate description of the stick-slip motion in friction force microscopy experiments
    Evstigneev, M
    Reimann, P
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [25] Stick-slip motion in a friction oscillator with normal and tangential mode coupling
    Richard, T
    Detournay, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2000, 328 (09): : 671 - 678
  • [26] Revisiting the LuGre Friction Model STICK-SLIP MOTION AND RATE DEPENDENCE
    Astrom, Karl Johan
    Canudas-de-wit, Carlos
    IEEE CONTROL SYSTEMS MAGAZINE, 2008, 28 (06): : 101 - 114
  • [27] Two-dimensional stick-slip motion of Coulomb friction oscillators
    Fadaee, M.
    Yu, S. D.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (14) : 2438 - 2448
  • [28] Theory of stick-slip effect in friction
    Nachane, RP
    Hussain, GFS
    Iyer, KRK
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 1998, 23 (04) : 201 - 208
  • [29] SOURCE PARAMETERS FOR STICK-SLIP FRICTION
    JOHNSON, T
    SCHOLZ, CH
    WU, FT
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (11): : 1040 - &
  • [30] THE INFLUENCE OF FRICTION-SPEED RELATION ON THE OCCURRENCE OF STICK-SLIP MOTION
    YOU, HI
    HSIA, JH
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1995, 117 (03): : 450 - 455