Identification of key genes for HNSCC from public databases using bioinformatics analysis

被引:8
|
作者
Ye, Yuchu [1 ,2 ]
Wang, Jingyi [1 ,2 ]
Liang, Faya [1 ,2 ]
Song, Pan [1 ,2 ]
Yan, Xiaoqing [1 ,2 ]
Wu, Sangqing [1 ,2 ]
Huang, Xiaoming [1 ,2 ]
Han, Ping [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Otolaryngol Head & Neck Surg, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Head and neck squamous cell carcinoma (HNSCC); GEO database; The Cancer Genome Atlas (TCGA); Integrated bioinformatics; DEG (differentially expressed gene) analysis; SQUAMOUS-CELL CARCINOMA; EPITHELIAL-MESENCHYMAL TRANSITION; NECK CANCERS; EXPRESSION OMNIBUS; METASTATIC HEAD; MICROARRAY; RECURRENT; PROGNOSIS; SIGNATURE; PATHWAYS;
D O I
10.1186/s12935-021-02254-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The cause and underlying molecular mechanisms of head and neck squamous cell carcinoma (HNSCC) are unclear. Our study aims to identify the key genes associated with HNSCC and reveal potential biomarkers. Methods In this study, the expression profile dataset GSE83519 of the Gene Expression Omnibus database and the RNA sequencing dataset of HNSCC of The Cancer Genome Atlas were included for analysis. Sixteen differentially expressed genes were screened from these two datasets using R software. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was then adopted for survival analysis, and finally, three key genes related to the overall survival of HNSCC patients were identified. Furthermore, we verified these three genes using the Oncomine database and from real-time PCR and immunohistochemistry results from HNSCC tissues. Results The expression data of 44 samples from GSE83519 and 545 samples from TCGA-HNSC were collected. Using bioinformatics, the two databases were integrated, and 16 DEGs were screened out. Gene Ontology (GO) enrichment analysis showed that the biological functions of DEGs focused primarily on the apical plasma membrane and regulation of anoikis. Kyoto Encyclopedia of Genes and Genomes (KEGG) signalling pathway analysis showed that these DEGs were mainly involved in drug metabolism-cytochrome P450 and serotonergic synapses. Survival analysis identified three key genes, CEACAM5, CEACAM6 and CLCA4, that were closely related to HNSCC prognosis. The Oncomine database, qRT-PCR and IHC verified that all 3 key genes were downregulated in most HNSCC tissues compared to adjacent normal tissues. Conclusions This study indicates that integrated bioinformatics analyses play an important role in screening for differentially expressed genes and pathways in HNSCC, helping us better understand the biomarkers and molecular mechanism of HNSCC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Identification of key genes in osteoarthritis using bioinformatics, principal component analysis and meta-analysis
    Sun, Xiangxiang
    Duan, Honghao
    Xiao, Lin
    Yao, Shuxin
    He, Qiang
    Chen, Xinlin
    Zhang, Weijie
    Ma, Jianbing
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (01)
  • [42] Identification of invasive key genes in breast cancer by bioinformatics analysis
    Wang, Song
    Quan, Yi
    JOURNAL OF BUON, 2020, 25 (05): : 2255 - 2264
  • [43] Identification of Key Genes Involved in Glioblastoma by Integrated Bioinformatics Analysis
    Yan, Dongke
    Gong, Yanchao
    Wang, Yongling
    Li, Longmei
    Tong, Wenhui
    Pang, Jingjie
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2023, 13 (02) : 231 - 240
  • [44] Identification of key candidate genes for colorectal cancer by bioinformatics analysis
    Chen, Zhihua
    Lin, Yilin
    Gao, Ji
    Lin, Suyong
    Zheng, Yan
    Liu, Yisu
    Chen, Shao Qin
    ONCOLOGY LETTERS, 2019, 18 (06) : 6583 - 6593
  • [45] Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis
    Geng, Xiao-dong
    Wang, Wei-wei
    Feng, Zhe
    Liu, Ran
    Cheng, Xiao-long
    Shen, Wan-jun
    Dong, Zhe-yi
    Cai, Guang-yan
    Chen, Xiang-mei
    Hong, Quan
    Wu, Di
    JOURNAL OF DIABETES INVESTIGATION, 2019, 10 (04) : 972 - 984
  • [46] Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis
    Wu, Xuan
    Peng, Li
    Zhang, Yaqin
    Chen, Shilian
    Lei, Qian
    Li, Guancheng
    Zhang, Chaoyang
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2019, 16 (06): : 800 - 812
  • [47] Identification of key pathways and candidate genes in gliomas by bioinformatics analysis
    Cao, Yuan
    Song, Yali
    Quan, Juan
    Zhang, Liyu
    Tian, Qianqian
    Wu, Shuang
    Zhao, Chuanmei
    Li, Qiao
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 12 (11): : 12679 - 12692
  • [48] Identification of key candidate genes for pancreatic cancer by bioinformatics analysis
    Lv, Kui
    Yang, Jianying
    Sun, Junfeng
    Guan, Jianguo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 18 (01) : 451 - 458
  • [49] Identification of key genes associated with lung adenocarcinoma by bioinformatics analysis
    Wang, Xinyu
    Yang, Jiaojiao
    Gao, Xueren
    SCIENCE PROGRESS, 2021, 104 (01)
  • [50] IDENTIFICATION OF KEY GENES AND PATHWAYS IN GBM THROUGH BIOINFORMATICS ANALYSIS
    Wang, Ziheng
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (07): : 5248 - 5252