An Eco-Driving Controller Based on Intelligent Connected Vehicles for Sustainable Transportation

被引:6
|
作者
Wang, Pangwei [1 ]
Ye, Rongsheng [1 ]
Zhang, Juan [2 ]
Wang, Tianren [1 ]
机构
[1] North China Univ Technol, Beijing Key Lab Urban Intelligent Traff Control T, Beijing 100144, Peoples R China
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
基金
北京市自然科学基金;
关键词
car-following model; eco-driving; intelligent connected vehicles (ICVs); model predictive control (MPC); sustainable transportation; EXPERIMENTAL VALIDATION; FUEL CONSUMPTION; MODEL; EMISSIONS; SYSTEM; SPEED; ACCELERATION; EFFICIENCY; DESIGN;
D O I
10.3390/app12094533
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid increase in the number of vehicles has brought significant challenges to energy conservation and environmental sustainability. To solve these problems, various frameworks and models based on intelligent connected vehicles (ICVs) have been identified for road capacity improvement and fuel consumption reduction. In this paper, an eco-driving controller with ICVs was first proposed by combining vehicular dynamics with wireless communication technologies, where the nodes that can implement perception and control in a simulated complex traffic environment have been deployed. Then, the information of the surrounding environment, including the preceding vehicles, was obtained through a wireless communication module based on the technology of vehicle to everything (V2X). Besides, the advanced model predictive control (MPC) strategy was integrated into the ICV controller with the objectives of minimizing the driving spacing and improving environmental sustainability. Finally, a co-simulation platform for ICVs based on a robot operating system (ROS) and PreScan software was constructed, and the dynamic characteristics of the controller were verified in three aspects, including car-following behaviors, fuel efficiency improvement, and carbon dioxide emission reduction. The proposed controller showed that it can reduce fuel consumption by 3.71% and reduce carbon dioxide emissions by 3.42%, in the scenarios of a preceding vehicle with constant velocity, and by 6.77% and 7.91%, respectively, in a preceding vehicle with variable velocity scenario. The demonstrated experimental results show that the proposed controller can effectively reduce fuel consumption and emissions during car-following.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] An Eco-Driving Control Strategy for Connected Electric Vehicles at Intersections Based on Preceding Vehicle Speed Prediction
    Zhang, Zhe
    Ding, Haitao
    Guo, Konghui
    Zhang, Niaona
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 1754 - 1766
  • [22] Hybrid Reinforcement Learning-Based Eco-Driving Strategy for Connected and Automated Vehicles at Signalized Intersections
    Bai, Zhengwei
    Hao, Peng
    Shangguan, Wei
    Cai, Baigen
    Barth, Matthew J.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15850 - 15863
  • [23] Eco-driving of Connected and Automated Vehicles in Mixed and Power-heterogeneous Traffic Flow
    Hu Y.-H.
    Jin X.-F.
    Wang Y.-B.
    Guo J.-Q.
    Zhang L.-H.
    Hu J.
    Lu Q.-R.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (03): : 15 - 27
  • [24] Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging
    Zhang, Jian
    Tang, Tie-Qiao
    Yan, Yadan
    Qu, Xiaobo
    Applied Energy, 2021, 282
  • [25] Dynamic Eco-Driving on Signalized Arterial Corridors during the Green Phase for the Connected Vehicles
    Zhao, Xiangmo
    Wu, Xia
    Xin, Qi
    Sun, Kang
    Yu, Shaowei
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [26] Eco-driving at signalised intersections for electric vehicles
    Zhang, Rui
    Yao, Enjian
    IET INTELLIGENT TRANSPORT SYSTEMS, 2015, 9 (05) : 488 - 497
  • [27] Eco-Driving System for Connected Automated Vehicles: Multi-Objective Trajectory Optimization
    Yang, Xianfeng Terry
    Huang, Ke
    Zhang, Zhehao
    Zhang, Zhao Alan
    Lin, Fang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7837 - 7849
  • [28] Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging
    Zhang, Jian
    Tang, Tie-Qiao
    Yan, Yadan
    Qu, Xiaobo
    APPLIED ENERGY, 2021, 282
  • [29] A Deep Reinforcement Learning Framework for Eco-Driving in Connected and Automated Hybrid Electric Vehicles
    Zhu, Zhaoxuan
    Gupta, Shobhit
    Gupta, Abhishek
    Canova, Marcello
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 1713 - 1725
  • [30] Eco-driving strategy for connected vehicles at signalized intersections considering human driver error
    Chen, Jian
    Qian, Lijun
    Xuan, Liang
    Chen, Chen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (13) : 4046 - 4064