Minimax identification of a nonlinear dynamic observation system

被引:1
|
作者
Pankov, AR [1 ]
Popov, AS [1 ]
机构
[1] State Tech Univ, Moscow State Aviat Inst, Moscow, Russia
关键词
Covariance; Mechanical Engineer; Theoretical Result; Nonlinear Dynamic; System Theory;
D O I
10.1023/B:AURC.0000014726.04297.31
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Minimax optimization of the estimate of parameters of a nonlinear observation model containing random errors with unknown covariance matrices is investigated. An iteration algorithm for computing the minimax estimate is designed and its convergence is demonstrated. Theoretical results are tested by concrete examples.
引用
收藏
页码:291 / 298
页数:8
相关论文
共 50 条
  • [31] Nonlinear system identification using optimized dynamic neural network
    Xie, W. F.
    Zhu, Y. Q.
    Zhao, Z. Y.
    Wong, Y. K.
    NEUROCOMPUTING, 2009, 72 (13-15) : 3277 - 3287
  • [32] Multinomial Approximations for Identification of Nonlinear Dynamic System'S Parameters'
    Boguslavsky, I. A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 559 - 563
  • [33] Nonlinear dynamical system identification with dynamic noise and observational noise
    Nakamura, Tomomichi
    Small, Michael
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 223 (01) : 54 - 68
  • [34] Study on fault identification of mechanical dynamic nonlinear transmission system
    Guo, Erfu
    Jagota, Vishal
    Makhatha, Mamookho Elizabeth
    Kumar, Pawan
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 518 - 525
  • [35] Identification of nonlinear dynamic system using machine learning techniques
    Samal D.
    Bisoi R.
    Sahu B.
    International Journal of Power and Energy Conversion, 2021, 12 (01) : 23 - 43
  • [36] CONDITIONALLY-MINIMAX FILTRATION IN A SYSTEM WITH COMMUTATING OBSERVATION CHANNELS
    BOSOV, AV
    PANKOV, AP
    AUTOMATION AND REMOTE CONTROL, 1995, 56 (06) : 835 - 843
  • [37] Nonlinear system identification using embedded dynamic neural networks
    Yazdizadeh, A
    Khorasani, K
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 378 - 383
  • [38] Nonlinear Dynamic System Identification Based on Fuzzy Kalman Filter
    Pires, Danubia Soares
    de Oliveira Serra, Ginalber Luiz
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 17 - 23
  • [39] Powerful and flexible fuzzy algorithm for nonlinear dynamic system identification
    Lo Schiavo, A
    Luciano, AM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (06) : 828 - 835
  • [40] Dynamic neural networks with hybrid structures for nonlinear system identification
    Deng, Jiamei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) : 281 - 292