Application of Data Driven Optimization for Change Detection in Synthetic Aperture Radar Images

被引:7
|
作者
Li, Yangyang [1 ]
Liu, Guangyuan [1 ]
Li, Tiantian [1 ]
Jiao, Licheng [1 ]
Lu, Gao [2 ]
Marturi, Naresh [3 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[2] HUAWEI Technol Co Ltd, Shanghai, Peoples R China
[3] Univ Birmingham, Extreme Robot Lab, Edgbaston B15 2TT, England
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
Hyper-parameter optimization; data-driven optimization; change detection; deep belief network (DBN); synthetic aperture radar (SAR) image; UNSUPERVISED CHANGE DETECTION; MULTITEMPORAL SAR IMAGES; SURROGATE; ALGORITHM; MODEL; SEARCH;
D O I
10.1109/ACCESS.2019.2962622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven optimization is an efficient global optimization algorithm for expensive black-box functions. In this paper, we apply data-driven optimization algorithm to the task of change detection with synthetic aperture radar (SAR) images for the first time. We first propose an easy-to-implement threshold algorithm for change detection in SAR images based on data-driven optimization. Its performance has been compared with commonly used methods like generalized Kittler and Illingworth threshold algorithms (GKIT). Next, we demonstrate how to tune the hyper-parameter of a (previously available) deep belief network (DBN) for change detection using data-driven optimization. Extensive evaluations are carried out using publicly available benchmark datasets. The obtained results suggest comparatively strong performance of our optimized DBN-based change detection algorithm.
引用
收藏
页码:11426 / 11436
页数:11
相关论文
共 50 条
  • [31] Detection of extreme waves using synthetic aperture radar images
    Lehner, S
    Schulz-Stellenfleth, J
    Niedermeier, A
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1893 - 1895
  • [32] Filtered Convolution for Synthetic Aperture Radar Images Ship Detection
    Zhang, Luyang
    Wang, Haitao
    Wang, Lingfeng
    Pan, Chunhong
    Huo, Chunlei
    Liu, Qiang
    Wang, Xinyao
    REMOTE SENSING, 2022, 14 (20)
  • [33] A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images
    Baek, Won-Kyung
    Jung, Hyung-Sup
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (05) : 737 - 750
  • [34] Change Detection from Synthetic Aperture Radar Images via Dual Path Denoising Network
    Wang, Junjie
    Gao, Feng
    Dong, Junyu
    Du, Qian
    Li, Heng-Chao
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 2667 - 2680
  • [35] Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images
    Gong, Maoguo
    Su, Linzhi
    Jia, Meng
    Chen, Weisheng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (01) : 98 - 109
  • [36] Change Detection From Synthetic Aperture Radar Images via Dual Path Denoising Network
    Wang, Junjie
    Gao, Feng
    Dong, Junyu
    Du, Qian
    Li, Heng-Chao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2667 - 2680
  • [37] Farmland detection in synthetic aperture radar images with texture signature
    Xu, Wentao
    Zhang, Guixu
    Duan, Ye
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [38] Integrated Object Detection and Communication for Synthetic Aperture Radar Images
    Xu, Zhiping
    Xu, Deyin
    Lin, Lixiong
    Song, Linqi
    Song, Dan
    Sun, Yanglong
    Chen, Qiwang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 294 - 307
  • [39] Coastline detection using optical and synthetic aperture radar images
    Yu, T.
    Xu, S. W.
    Tao, B. Y.
    Shao, W. Z.
    ADVANCES IN SPACE RESEARCH, 2022, 70 (01) : 70 - 84
  • [40] Change Detection in Synthetic Aperture Radar Images Based on a Generalized Gamma Deep Belief Networks
    Jia, Meng
    Zhao, Zhiqiang
    SENSORS, 2021, 21 (24)