Saturable absorption in detonation nanodiamond dispersions

被引:7
|
作者
Vanyukov, Viatcheslav [1 ,2 ]
Mikheev, Gennady [3 ]
Mogileva, Tatyana [3 ]
Puzyr, Alexey [4 ]
Bondar, Vladimir [4 ]
Lyashenko, Dmitry [5 ]
Chuvilin, Andrey [6 ,7 ]
机构
[1] Univ Eastern Finland, Inst Photon, Joensuu, Finland
[2] Hypermemo Ltd, Joensuu, Finland
[3] Russian Acad Sci, Inst Mech, Izhevsk, Russia
[4] RAS, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk, Russia
[5] Texas State Univ, San Marcos, TX USA
[6] CIC nanoGUNE Consolider, Donostia San Sebastian, Spain
[7] Ikerbasque, Basque Fdn Sci, Bilbao, Spain
基金
俄罗斯基础研究基金会; 芬兰科学院;
关键词
nanomaterials; nonlinear optics; nanodiamonds; saturable absorption; modelocking; NONLINEAR LIGHT-SCATTERING; MODE-LOCKING; OPTICAL-PROPERTIES; PULSE GENERATION; ULTRAFAST LASERS; GRAPHENE; FEMTOSECOND; SUSPENSIONS; PHOTONICS; NANOTUBES;
D O I
10.1117/1.JNP.11.032506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Purification and tailored functionalities in detonation nanodiamond
    Ardhayanti, Lutfia Isna
    Islam, Md Saidul
    Cai, Ze
    Fukuzaki, Masahiro
    Liu, Xinyao
    Zhang, Zhongyue
    Sekine, Yoshihiro
    Hayami, Shinya
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2024, 97 (09)
  • [22] Thermodesorption of impurities from detonation nanodiamond
    Bogdanov, D. G.
    Makarov, S. V.
    Plotnikov, V. A.
    TECHNICAL PHYSICS LETTERS, 2012, 38 (02) : 199 - 202
  • [23] Optical properties of detonation nanodiamond hydrosols
    A. E. Aleksenskii
    A. Ya. Vul’
    S. V. Konyakhin
    K. V. Reich
    L. V. Sharonova
    E. D. Eidel’man
    Physics of the Solid State, 2012, 54 : 578 - 585
  • [24] Structure and defects of detonation synthesis nanodiamond
    Iakoubovskii, K
    Baidakova, MV
    Wouters, BH
    Stesmans, A
    Adriaenssens, GJ
    Vul', AY
    Grobet, PJ
    DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) : 861 - 865
  • [25] Regularities of Chlorination of the Detonation NanoDiamond Surface
    I. I. Kulakova
    A. Yu. Pereyaslavcev
    G. V. Lisichkin
    Moscow University Chemistry Bulletin, 2019, 74 : 246 - 256
  • [26] The analysis of thermal stability of detonation nanodiamond
    Efremov, V. P.
    Zakatilova, E. I.
    XXXI INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER (ELBRUS 2016), 2016, 774
  • [27] Modification and functional properties of detonation nanodiamond
    Grechikhina, A. M.
    Abaturov, M. A.
    Alexenko, A. E.
    Galushko, T. B.
    Melnik, N. N.
    Gorbunov, A. M.
    Kiselev, M. R.
    Polushin, N. I.
    Zavaleyev, V. A.
    Spitsyn, B. V.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (04) : 325 - 327
  • [28] STABILIZATION OF NANOPARTICLES ON THE SURFACE OF DETONATION NANODIAMOND
    Popkov, O. V.
    Yurkov, G. Yu.
    Fionov, A. S.
    PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 2009, : 394 - +
  • [29] Optical Properties of Detonation Nanodiamond Hydrosols
    Aleksenskii, A. E.
    Vul', A. Ya.
    Konyakhin, S. V.
    Reich, K. V.
    Sharonova, L. V.
    Eidel'man, E. D.
    PHYSICS OF THE SOLID STATE, 2012, 54 (03) : 578 - 585
  • [30] Deep purification of detonation nanodiamond material
    Dolmatov, V. Yu
    Vehanen, A.
    Myllymaki, V.
    Rudometkin, K. A.
    Panova, A. N.
    Korolev, K. M.
    Shpadkovskaya, T. A.
    JOURNAL OF SUPERHARD MATERIALS, 2013, 35 (06) : 408 - 414