On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials

被引:19
|
作者
Arbi, K. [1 ]
Jimenez, R. [1 ]
Salkus, T. [2 ]
Orliukas, A. F. [2 ]
Sanz, J. [1 ]
机构
[1] Mat Sci Inst Madrid ICMM CSIC, Madrid 28049, Spain
[2] Vilnius Univ, Fac Phys, LT-10222 Vilnius, Lithuania
关键词
Nasicon compounds; Neutron diffraction; NMR and impedance spectroscopy; Solid electrolytes; Lithium batteries; IONIC-CONDUCTIVITY; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURES; PHASE-TRANSITION; NMR; CONDUCTORS; IMPEDANCE; MOBILITY; LI1+XTI2-XALX(PO4)(3); TRANSPORT;
D O I
10.1016/j.ssi.2014.10.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural features responsible for outstanding Li conductivity of Li1+xRxTi2-x(PO4)(3) (LRTP) Nasicon samples (0 <= x <= 0.6 and R = Al, Sc, In) prepared by the ceramic route have been analyzed by XRD, ND, MAS-NMR and impedance spectroscopy. The structural analysis showed that all samples display the rhombohedral (S.G. R-3c) symmetry. The structural site occupancy has been investigated by Li-7, Al-27/Sc-45 and P-31 MAS-NMR spectroscopy. The Fourier map differences deduced from high-resolution ND patterns of LAITP samples revealed that Li ions occupy Li1 sites and to a lower extent Li3/Li3' sites inside Li2 cavities. The location of Li at 3 sites minimizes electrostatic Li (Li1-Li3) repulsions, enhancing local mobility in LRTP samples. A maximum of conductivity was detected for 0.2 <= x <= 0.4, when a significant amount of vacant Li1 sites was created at the intersection of conduction pathways. The increment of vacant Li1 sites explains the existence of two Li motion regimes detected by Li-7 NMR and impedance spectroscopy. In the low temperature regime, activation energy and migration entropy of Li have been related by the Meyer-Neldel relationship. In the high-temperature regime, further investigation is required to assess the role of vacancy in lithium conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [21] Study of NASICON Structured Lithium Ion Conductor Li1+xAlxZr2-x(PO4)3
    Lu, Xiaojuan
    Feng, Xue
    Lin, Wenwei
    Liu, Haitao
    Zeng, Yunjie
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, 2015, 23 : 227 - 230
  • [22] The NASICON solid solution Li1−xLax/3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements
    M. Barré
    F. Le Berre
    M-P. Crosnier-Lopez
    C. Galven
    O. Bohnké
    J-L. Fourquet
    Ionics, 2009, 15 : 681 - 687
  • [23] Microstructure and ion transport in Li1 + xTi2 − xMx(PO4)3 (M = Cr, Fe, Al) NASICON-type materials
    A. I. Svitan’ko
    S. A. Novikova
    I. A. Stenina
    V. A. Skopets
    A. B. Yaroslavtsev
    Inorganic Materials, 2014, 50 : 273 - 279
  • [24] Catalytic Activity of Li1 + xHf2–xInx(PO4)3-Based NASICON-Type Materials for Ethanol Conversion Reactions
    S. A. Novikova
    A. B. Il’in
    N. A. Zhilyaeva
    A. B. Yaroslavtsev
    Inorganic Materials, 2018, 54 : 676 - 682
  • [25] Ionic conductivity of A3 − 2xNbxAl2 − x(PO4)3 (A = Li, Na) NASICON-type phosphates
    A. R. Shaikhlislamova
    A. Yu. Goryainov
    A. B. Yaroslavtsev
    Inorganic Materials, 2010, 46 : 896 - 899
  • [26] Synthesis and Conductivity Study of Solid Electrolytes Li1 + xAlxGe2–x(PO4)3 (x = 0–0.65)
    M. A. Moshareva
    S. A. Novikova
    Russian Journal of Inorganic Chemistry, 2018, 63 : 319 - 323
  • [27] Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics
    Narvaez-Semanate, J. L.
    Rodrigues, A. C. M.
    SOLID STATE IONICS, 2010, 181 (25-26) : 1197 - 1204
  • [28] Synthesis and ionic conductivity of (NH4)1–xHxHf2(PO4)3 (x = 0–1) NASICON-type materials
    M. A. Moshareva
    S. A. Novikova
    A. B. Yaroslavtsev
    Inorganic Materials, 2016, 52 : 1283 - 1290
  • [29] Ionic conductivity of A3-2x Nb x Al2-x (PO4)3 (A = Li, Na) NASICON-type phosphates
    Shaikhlislamova, A. R.
    Goryainov, A. Yu
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2010, 46 (08) : 896 - 899
  • [30] Phase transformations and cation mobility in NASICON lithium zirconium double phosphates Li1±xZr2-xMx(PO4)3 (M = Sc, Y, In, Nb, Ta)
    Stenina, IA
    Kislitsyn, MN
    Pinus, IY
    Arkhangel'skii, IV
    Zhuravlev, NA
    Yaroslavtsev, AB
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2005, 50 (06) : 906 - 911