Laser-driven acceleration of protons from hydrogenated annealed silicon targets

被引:18
|
作者
Picciotto, A. [1 ]
Margarone, D. [2 ]
Krasa, J. [2 ]
Velyhan, A. [2 ]
Serra, E. [4 ,5 ]
Bellutti, P. [1 ]
Scarduelli, G. [4 ,5 ]
Calliari, L. [4 ,5 ]
Krousky, E. [2 ]
Rus, B. [2 ]
Dapor, M. [3 ,4 ,5 ]
机构
[1] Fdn Bruno Kessler CMM, Microtechnol Lab, I-38050 Povo, Trento, Italy
[2] ASCR, Inst Phys, VVI, Prague, Czech Republic
[3] Univ Trent, Dept Mat Engn & Ind Technol, I-38123 Trento, Italy
[4] FBK CMM, Interdisciplinary Lab Computat Sci LISC, I-38050 Povo, Trento, Italy
[5] Univ Trent, I-38050 Povo, Trento, Italy
关键词
AMORPHOUS-SILICON; PLASMA; SPECTRA; ENERGY; IONS; TEMPERATURE;
D O I
10.1209/0295-5075/92/34008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper provides the first demonstration that an hydrogenated annealed crystalline silicon may be used as a source of protons in laser-driven acceleration experiments. We analyze and compare the proton production from two silicon targets excited by a sub-nanosecond laser. One target (treated) was hydrogenated and annealed, while the other (untreated) did not undergo these procedures. The experimental results show that for the treated target, the number of generated protons is similar to 1.4x10(15) sr(-1) while for the other it is similar to 3.6x10(13) sr(-1). Their maximum energy is about 2MeV with a laser intensity three order of magnitude lower than in previous experiments. We obtain an increase of 80% in the proton kinetic energy and of 200% in the proton current as well as a large amount of Si(q+) ions (1 <= q <= 14) with respect to the untreated target. A deconvolution procedure based on a Boltzmann-like distribution is applied for the analysis of time-of-flight (TOF) spectra of proton and silicon ion beams. Copyright (C) EPLA, 2010
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Laser-driven particle acceleration
    Peter A. Norreys
    Nature Photonics, 2009, 3 : 423 - 425
  • [22] Fabrication and characterization of thin polymer targets for laser-driven ion acceleration
    Tebartz, A.
    Bedacht, S.
    Schaumann, G.
    Roth, M.
    5TH TARGET FABRICATION WORKSHOP, 2016, 713
  • [23] Enhanced laser-driven proton acceleration with gas-foil targets
    Levy, Dan
    Davoine, X.
    Debayle, A.
    Gremillet, L.
    Malka, V.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (06)
  • [24] Laser acceleration of protons from thin film targets
    Flippo, K
    Banerjee, S
    Bychenkov, VY
    Gu, S
    Maksimchuk, A
    Mourou, G
    Nemoto, K
    Umstadter, D
    ADVANCED ACCELERATOR CONCEPTS, 2001, 569 : 553 - 562
  • [25] Laser-Driven Shock Acceleration of Ion Beams from Spherical Mass-Limited Targets
    Henig, A.
    Kiefer, D.
    Geissler, M.
    Rykovanov, S. G.
    Ramis, R.
    Hoerlein, R.
    Osterhoff, J.
    Major, Zs.
    Veisz, L.
    Karsch, S.
    Krausz, F.
    Habs, D.
    Schreiber, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [26] Numerical modeling of laser-driven ion acceleration from near-critical gas targets
    Tatomirescu, Dragos
    Vizman, Daniel
    d'Humieres, Emmanuel
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (06)
  • [27] Ion acceleration from laser-driven electrostatic shocks
    Fiuza, F.
    Stockem, A.
    Boella, E.
    Fonseca, R. A.
    Silva, L. O.
    Haberberger, D.
    Tochitsky, S.
    Mori, W. B.
    Joshi, C.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [28] Directional Laser-Driven Ion Acceleration from Microspheres
    Sokollik, T.
    Schnuerer, M.
    Steinke, S.
    Nickles, P. V.
    Sandner, W.
    Amin, M.
    Toncian, T.
    Willi, O.
    Andreev, A. A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (13)
  • [29] Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets
    Ferri, J.
    Thiele, I
    Siminos, E.
    Gremillet, L.
    Smetanina, E.
    Dmitriev, A.
    Cantono, G.
    Wahlstrom, C-G
    Fulop, T.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (01)
  • [30] Laser-driven acceleration with Bessel beams
    Hafizi, B
    Esarey, E
    Sprangle, P
    PHYSICAL REVIEW E, 1997, 55 (03): : 3539 - 3545