An Efficient Representation for Genetic-Fuzzy Mining of Association Rules

被引:0
|
作者
Ting, Chuan-Kang [1 ]
Wang, Ting-Chen
Liaw, Rung-Tzuo
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 621, Taiwan
关键词
D O I
10.1007/978-3-319-13356-0_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data mining is a blooming area in information science. Mining association rules aims to find the relationship among items in the databases and has become one of the most important data mining technologies. Previous study shows the capability of genetic algorithm (GA) to find the membership functions for fuzzy data mining. However, the chromosome representation cannot avoid the occurrence of inappropriate arrangement of membership functions, resulting in inefficiency of GA in searching for the optimal membership functions. This study proposes a novel representation that takes advantage of the structure information of membership functions to deal with the issue. In the light of overlap and coverage, we propose two heuristics for appropriate arrangement of membership functions. The experimental results show that GA using the proposed representation can achieve high fitness and suitability. The results also indicate that the two heuristics help to well exploit the structure information and therefore enhance GA in terms of solution quality and convergence speed on fuzzy association rules mining.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 50 条
  • [31] Mining Fuzzy Association Rules in Databases
    Kuok, Chan Man
    Fu, Ada
    Wong, Man Hon
    SIGMOD Record (ACM Special Interest Group on Management of Data), 1998, 27 (01): : 41 - 46
  • [32] Mining fuzzy quantitative association rules
    Subramanyam, R. B. V.
    Goswami, A.
    EXPERT SYSTEMS, 2006, 23 (04) : 212 - 225
  • [33] An algorithm for mining fuzzy association rules
    Sheibani, Reza
    Ebrahimzadeh, Amir
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 486 - 490
  • [34] A Survey on Fuzzy Association Rules Mining
    Mguiris, Imen
    Amdouni, Hamida
    Gammoudi, Mohamed Mohsen
    VISION 2020: INNOVATION MANAGEMENT, DEVELOPMENT SUSTAINABILITY, AND COMPETITIVE ECONOMIC GROWTH, 2016, VOLS I - VII, 2016, : 3093 - 3103
  • [35] Mining fuzzy periodic association rules
    Lee, Wan-Jui
    Jiang, Jung-Yi
    Lee, Shie-Jue
    DATA & KNOWLEDGE ENGINEERING, 2008, 65 (03) : 442 - 462
  • [36] Fuzzy QMD Algorithm for Mining Fuzzy Association Rules
    Wang, Chien-Hua
    Lee, Wei-Hsuan
    Yeh, Chia-Hsuan
    Pang, Chin-Tzong
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2017), 2017, : 50 - 54
  • [37] A Fuzzy Close Algorithm for Mining Fuzzy Association Rules
    Pierrard, Regis
    Poli, Jean-Philippe
    Hudelot, Celine
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, PT II, 2018, 854 : 88 - 99
  • [38] EFFICIENT MINING OF FUZZY ASSOCIATION RULES FROM THE PRE-PROCESSED DATASET
    Farzanyar, Zahra
    Kangavari, Mohammadreza
    COMPUTING AND INFORMATICS, 2012, 31 (02) : 331 - 347
  • [39] Efficient mining of intertransaction association rules
    Tung, AKH
    Lu, HJ
    Han, JW
    Feng, L
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2003, 15 (01) : 43 - 56
  • [40] A mining algorithm for fuzzy weighted association rules
    Wang, BY
    Zhang, SM
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2495 - 2499