Complete noncompact manifolds with harmonic curvature
被引:7
|
作者:
Chu, Yawei
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
Fuyang Univ, Sch Math & Computat Sci, Fuyang 236037, Peoples R ChinaZhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
Chu, Yawei
[1
,2
]
机构:
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Univ, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
Harmonic curvature;
trace-free curvature tensor;
space form;
FLAT;
DEFORMATION;
D O I:
10.1007/s11464-012-0168-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (M (n) , g) be an n-dimensional complete noncompact Riemannian manifold with harmonic curvature and positive Sobolev constant. In this paper, by employing an elliptic estimation method, we show that (M (n) , g) is a space form if it has sufficiently small L (n/2)-norms of trace-free curvature tensor and nonnegative scalar curvature. Moreover, we get a gap theorem for (M (n) , g) with positive scalar curvature.
机构:
Hengyang Normal Univ, Dept Math & Computat Sci, Hengyang 421002, Peoples R ChinaHengyang Normal Univ, Dept Math & Computat Sci, Hengyang 421002, Peoples R China
机构:
Peking Univ, Key Lab Pure & Appl Math, Sch Math Sci, Beijing, Peoples R ChinaPeking Univ, Key Lab Pure & Appl Math, Sch Math Sci, Beijing, Peoples R China