On the twin paradox in static spacetimes: I. Schwarzschild metric

被引:6
|
作者
Sokolowski, Leszek M. [1 ,2 ]
机构
[1] Jagiellonian Univ, Astron Observ, Orla 171, PL-30244 Krakow, Poland
[2] Copernicus Ctr Interdisciplinary Studies, Krakow, Poland
关键词
Twin paradox; Static spacetimes; Jacobi fields; Conjugate points; CLOCK PARADOX;
D O I
10.1007/s10714-012-1337-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.
引用
收藏
页码:1267 / 1283
页数:17
相关论文
共 50 条
  • [31] Influence of matter geometry on shocked flows-I: Accretion in the Schwarzschild metric
    Tarafdar, Pratik
    Das, Tapas K.
    NEW ASTRONOMY, 2018, 62 : 1 - 14
  • [32] ON GENERALIZED COMMUTING PROPERTIES OF METRIC AUTOMORPHISMS .I.
    AOKI, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (06): : 467 - &
  • [33] Existence and stability of static spherical fluid shells in a Schwarzschild-Rindler-anti-de Sitter metric
    Alestas, G.
    Kraniotis, G. V.
    Perivolaropoulos, L.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [34] RAPTOR I. Time-dependent radiative transfer in arbitrary spacetimes
    Bronzwaer, T.
    Davelaar, J.
    Younsi, Z.
    Moscibrodzka, M.
    Falcke, H.
    Kramer, M.
    Rezzolla, L.
    ASTRONOMY & ASTROPHYSICS, 2018, 613
  • [35] A NEW EXPLANATION OF THE EXTINCTION PARADOX. PART I.
    Berg, Matthew J.
    Sorensen, Christopher M.
    Chakrabarti, Amit
    VI. PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON RADIATIVE TRANSFER (RADIATIVE TRANSFER), 2010,
  • [36] Interaction of Hawking radiation with static sources in de Sitter and Schwarzschild-de Sitter spacetimes -: art. no. 084022
    Castiñeiras, J
    Silva, IPCE
    Matsas, GEA
    PHYSICAL REVIEW D, 2003, 68 (08)
  • [37] Planes, branes and automorphisms I. Static branes
    Acharya, BS
    Figueroa-O'Farrill, JM
    Spence, B
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (07):
  • [38] Stochastic Graphon Games: I. The Static Case
    Carmona, Rene
    Cooney, Daniel B.
    Graves, Christy, V
    Lauriere, Mathieu
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (01) : 750 - 778
  • [39] CROSSING AND UNITARITY IN A MULTICHANNEL STATIC MODEL .I.
    EHRHARDT, PO
    FAIRLIE, DB
    JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) : 1685 - &
  • [40] Hierarchical control of static prehension: I. Biomechanics
    Gorniak, Stacey L.
    Zatsiorsky, Vladimir M.
    Latash, Mark L.
    EXPERIMENTAL BRAIN RESEARCH, 2009, 193 (04) : 615 - 631