A Generic Margulis Number for Hyperbolic 3-Manifolds

被引:0
|
作者
Shalen, Peter B. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA
关键词
VOLUME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that 0.29 is a Margulis number for all but finitely many hyperbolic 3-manifolds. The finitely many exceptions are all closed.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 50 条
  • [1] On the Number of Hyperbolic 3-Manifolds of a Given Volume
    Hodgson, Craig
    Masai, Hidetoshi
    GEOMETRY AND TOPOLOGY DOWN UNDER, 2013, 597 : 295 - 320
  • [2] HYPERBOLIC 3-MANIFOLDS WITH LARGE KISSING NUMBER
    Doria, Cayo
    Murillo, Plinio G. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4595 - 4607
  • [3] Volumes of hyperbolic 3-manifolds of betti number at least 3
    Przeworski, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 359 - 360
  • [4] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [5] INCREASING THE NUMBER OF FIBERED FACES OF ARITHMETIC HYPERBOLIC 3-MANIFOLDS
    Dunfield, Nathan M.
    Ramakrishnan, Dinakar
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (01) : 53 - 97
  • [6] On the growth of the first Betti number of arithmetic hyperbolic 3-manifolds
    Kionke, Steffen
    Schwermer, Joachim
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (02) : 531 - 565
  • [7] On Margulis cusps of hyperbolic -manifolds
    Erlandsson, Viveka
    Zakeri, Saeed
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 75 - 103
  • [8] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [9] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [10] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973