Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems

被引:47
|
作者
Bernal de lazaro, Jose Manuel [1 ]
Prieto Moreno, Alberto [1 ]
Llanes Santiago, Orestes [1 ]
da Silva Neto, Antonio Jose [2 ]
机构
[1] CUJAE, Dept Automat & Computac, Inst Super Politecn Jose Antonio Echeverria, Havana 19390, Cuba
[2] IPRJ UERJ, BR-28625570 Nova Friburgo, RJ, Brazil
关键词
Fault diagnosis; Feature extraction; Kernel evaluation measures; KPCA; KFDA; Dimensionality reduction; ROTATING MACHINERY; FEATURE-EXTRACTION; OPTIMIZATION; CLASSIFICATION; PARAMETERS;
D O I
10.1016/j.cie.2015.05.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Currently, industry needs more robust fault diagnosis systems. One way to achieve this is to complement these systems with preprocessing modules. This makes possible to reduce the dimension of the work-space by removing irrelevant information that hides faults in development or overloads the system's management. In this paper, a comparison between five performance measures in the adjustment of a Gaussian kernel used with the preprocessing techniques: Kernel Fisher Discriminant Analysis (KFDA) and Kernel Principal Component Analysis (KPCA) is made. The measures of performance used were: Target alignment, Alpha, Beta, Gamma and Fisher. The best results were obtained using the KFDA with the Alpha metric achieving a significant reduction in the dimension of the workspace and a high accuracy in the fault diagnosis. As fault classifier in the Tennessee Eastman Process benchmark an Artificial Neural Network was used. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 50 条
  • [11] Implementation of stochastic methods for industrial gas turbine fault diagnosis
    Romessis, C.
    Mathioudakis, K.
    Proceedings of the ASME Turbo Expo 2005, Vol 1, 2005, : 723 - 730
  • [12] State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems
    Pulido, Belarmino
    Zamarreno, Jesus M.
    Merino, Alejandro
    Bregon, Anibal
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 79 : 67 - 86
  • [13] Applied fault detection and diagnosis for industrial gas turbine systems
    Zhang Y.
    Bingham C.
    Garlick M.
    Gallimore M.
    International Journal of Automation and Computing, 2017, 14 (4) : 463 - 473
  • [14] Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies
    Camps Echevarria, Lidice
    Llanes-Santiago, Orestes
    da Silva Neto, Antonio Jose
    NICSO 2010: NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION, 2010, 284 : 53 - +
  • [15] Fault Diagnosis of Industrial Systems with Bayesian Networks and Neural Networks
    Garza Castanon, Luis E.
    Nieto Gonzalez, Juan Pablo
    Garza Castanon, Mauricio A.
    Morales-Menendez, Ruben
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 998 - +
  • [16] Distance Rejection in a Bayesian Network for Fault Diagnosis of Industrial Systems
    Verron, Sylvain
    Tiplica, Teodor
    Kobi, Abdessarnad
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 496 - 501
  • [17] Overview of fault diagnosis methods for Discrete Event Systems
    Zaytoon, J.
    Lafortune, S.
    ANNUAL REVIEWS IN CONTROL, 2013, 37 (02) : 308 - 320
  • [18] Fault detection and diagnosis methods for photovoltaic systems: A review
    Mellit, A.
    Tina, G. M.
    Kalogirou, S. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 91 : 1 - 17
  • [19] Comparison of subspace analysis methods for fault detection in industrial systems
    Nguyen, V. -H.
    Rutten, C.
    Golinval, J. -C.
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 985 - 998
  • [20] Comparative Evaluation of Classification Methods Used in the Fault Diagnosis of Industrial Processes
    Moreno, A. P.
    Santiago, O. L.
    de Lazaro, J. M. B.
    Moreno, E. G.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (02) : 682 - 689