Low temperature epitaxial growth of GaP on Si by atomic-layer deposition with plasma activation

被引:14
|
作者
Uvarov, A., V [1 ]
Gudovskikh, A. S. [1 ,2 ]
Nevedomskiy, V. N. [3 ]
Baranov, A., I [1 ]
Kudryashov, D. A. [1 ]
Morozov, I. A. [1 ]
Kleider, J-P [4 ,5 ]
机构
[1] St Petersburg Natl Res Acad Univ RAS, St Petersburg 194091, Russia
[2] St Petersburg Electrotech Univ LETI, St Petersburg 197376, Russia
[3] Ioffe Inst, St Petersburg 194021, Russia
[4] Univ Paris Saclay, Cent Supelec, CNRS, Lab Genie Elect & Elect Paris, F-91192 Gif Sur Yvette, France
[5] Sorbonne Univ, CNRS, Lab Genie Elect & Elect Paris, F-75252 Paris, France
基金
俄罗斯科学基金会;
关键词
atomic layer deposition; gallium phosphide; plasma; SILICON;
D O I
10.1088/1361-6463/ab8bfd
中图分类号
O59 [应用物理学];
学科分类号
摘要
An approach for epitaxial growth of GaP layers on Si substrates at low temperature (380 degrees C) by plasma-enhanced atomic layer deposition (PEALD) is explored. A significant improvement of the crystalline properties of the GaP layers is obtained using additionalin-situAr plasma treatment. The epitaxial growth for the first 20-30 nm of GaP on Si is demonstrated from transmission electron microscopy. Moreover, the use ofin-situAr plasma treatment during the PEALD process allows one to increase the growth rate per cycle from 0.9 +/- 0.1 angstrom/cycle to 1.9 +/- 0.1 angstrom/cycle and reduce the RMS roughness from 3.76 nm to 1.88 nm. The effect of Ar plasma treatment on the electronic properties of the GaP/Si interface is studied by deep level transient spectroscopy (DLTS). A defect level at (0.33 +/- 0.03) eV below the conduction band is observed in the subsurface layer of Si for the GaP/Si structure grown under Ar plasma treatment. However, the defect response observed by DLTS vanishes after rapid thermal annealing at 500 oC in nitrogen ambient.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates
    S. A. Kukushkin
    A. V. Osipov
    A. I. Romanychev
    Physics of the Solid State, 2016, 58 : 1448 - 1452
  • [22] Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates
    Kukushkin, S. A.
    Osipov, A. V.
    Romanychev, A. I.
    PHYSICS OF THE SOLID STATE, 2016, 58 (07) : 1448 - 1452
  • [23] EFFECT OF SI-GE BUFFER LAYER FOR LOW-TEMPERATURE SI EPITAXIAL-GROWTH ON SI SUBSTRATE BY RF PLASMA CHEMICAL VAPOR-DEPOSITION
    SUZUKI, S
    ITOH, T
    JOURNAL OF APPLIED PHYSICS, 1983, 54 (03) : 1466 - 1470
  • [24] Low temperature plasma enhanced deposition of GaP films on Si substrate
    Gudovskikh, Alexander S.
    Morozov, Ivan A.
    Uvarov, Alexander V.
    Kudryashov, Dmitriy A.
    Nikitina, Ekaterina V.
    Bukatin, Anton S.
    Nevedomskiy, Vladimir N.
    Kleider, Jean-Paul
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02):
  • [25] Epitaxial growth of cobalt oxide by atomic layer deposition
    Klepper, K. B.
    Nilsen, O.
    Fjellvag, H.
    JOURNAL OF CRYSTAL GROWTH, 2007, 307 (02) : 457 - 465
  • [26] Epitaxial growth of InN thin films by plasma-enhanced atomic layer deposition
    Feng, Xingcan
    Peng, Hong
    Gong, Jinhui
    Wang, Wei
    Liu, Hu
    Quan, Zhijue
    Pan, Shuan
    Wang, Li
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (24)
  • [27] Atomic-layer deposition of cadmium chalcogenides on silicon
    Ezhovskii, Yu. K.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 88 (09) : 1580 - 1584
  • [28] Atomic layer epitaxial predeposition for GaAs growth on Si
    Das, U
    Dhar, S
    Mazumdar, M
    APPLIED PHYSICS LETTERS, 1996, 68 (25) : 3573 - 3575
  • [29] Atomic-layer deposition of cadmium chalcogenides on silicon
    Yu. K. Ezhovskii
    Russian Journal of Physical Chemistry A, 2014, 88 : 1580 - 1584
  • [30] Atomic-layer deposition of crystalline BeO on SiC
    Lee, Seung Min
    Jang, Yoonseo
    Jung, Jongho
    Yum, Jung Hwan
    Larsen, Eric S.
    Bielawski, Christopher W.
    Wang, Weijie
    Ryou, Jae-Hyun
    Kim, Hyun-Seop
    Cha, Ho-Young
    Oh, Jungwoo
    APPLIED SURFACE SCIENCE, 2019, 469 : 634 - 640