Efficient Region Search for Object Detection

被引:0
|
作者
Vijayanarasimhan, Sudheendra [1 ]
Grauman, Kristen [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a branch-and-cut strategy for efficient region-based object detection. Given an oversegmented image, our method determines the subset of spatially contiguous regions whose collective features will maximize a classifier's score. We formulate the objective as an instance of the prize-collecting Steiner tree problem, and show that for a family of additive classifiers this enables fast search for the optimal object region via a branch-and-cut algorithm. Unlike existing branch-and-bound detection methods designed for bounding boxes, our approach allows scoring of irregular shapes-which is especially critical for objects that do not conform to a rectangular window. We provide results on three challenging object detection datasets, and demonstrate the advantage of rapidly seeking best-scoring regions rather than subwindow rectangles.
引用
收藏
页码:1401 / 1408
页数:8
相关论文
共 50 条
  • [21] Weakly Supervised Region-Level Contrastive Learning for Efficient Object Detection
    Deng, Yuang
    Zhang, Yuhang
    Dai, Wenrui
    Zhang, Xiaopeng
    Xiong, Hongkai
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [22] DetNAS: Backbone Search for Object Detection
    Chen, Yukang
    Yang, Tong
    Zhang, Xiangyu
    Meng, Gaofeng
    Xiao, Xinyu
    Sun, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Efficient Object Detection Based on Masking Semantic Segmentation Region for Lightweight Embedded Processors
    Yun, Heuijee
    Park, Daejin
    SENSORS, 2022, 22 (22)
  • [24] Efficient Object Detection in SAR Images Based on Computation-Aware Neural Architecture Search
    Li, Chuanyou
    Li, Yifan
    Hu, Huanyun
    Shang, Jiangwei
    Zhang, Kun
    Qian, Lei
    Wang, Kexiang
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [25] MSQuant: Efficient Post-Training Quantization for Object Detection via Migration Scale Search
    Jiang, Zhesheng
    Li, Chao
    Qu, Tao
    He, Chu
    Wang, Dingwen
    ELECTRONICS, 2025, 14 (03):
  • [26] Region encode and region logical algorithm for object detection
    Nie, Shou-Ping
    Liu, Feng
    Wang, Hong
    Zhongguo Jiguang/Chinese Journal of Lasers, 2004, 31 (02): : 185 - 189
  • [27] Salient Region Detection for Object Tracking
    Chan, Fan
    Jiang, Min
    Tang, Jinshan
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2012, 2012, 8406
  • [28] Adaptive Region Pooling for Object Detection
    Tsai, Yi-Hsuan
    Hamsici, Onur C.
    Yang, Ming-Hsuan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 731 - 739
  • [29] Learning Region Features for Object Detection
    Gu, Jiayuan
    Hu, Han
    Wang, Liwei
    Wei, Yichen
    Dai, Jifeng
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 392 - 406
  • [30] Discriminative Region Mining for Object Detection
    Chen, Lvran
    Zheng, Huicheng
    Yan, Zhiwei
    Li, Ye
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4297 - 4310