Nuclear physics methods for problems in relativistic quantum mechanics

被引:1
|
作者
Moshinsky, M [1 ]
Riquer, V [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
关键词
D O I
10.1142/S0218301398000300
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Atomic and molecular physicists have developed extensive and detailed approximate methods for dealing with the relativistic versions of the Hamiltonians appearing in their fields. Nuclear physicists were originally more concerned with non-relativistic problems as the energies they were dealing with were normally small compared with the rest energy of the nucleon. This situation has changed with the appearance of the quark models of nucleons and thus the objective of this paper is to use the standard variational procedures of nuclear physics for problems in relativistic quantum mechanics. The 4 x 4 alpha and beta matrices in the Dirac equation are replaced by 2 x 2 matrices, one associated with ordinary spin and the other, which we call sign spin, is mathematically identical to the isospin of nuclear physics. The states on which our Hamiltonians will act will be the usual harmonic oscillator ones with ordinary and sign spin and the frequency omega of the oscillator will be our only variational parameter. The example discussed as an illustration will still be the Coulomb problem as the exact energies of the relativistic bound states are available for comparison. A gap of the order of 2mc(2) is observed between states of positive and negative energy, that permits the former to be compared with the exact results.
引用
收藏
页码:559 / 571
页数:13
相关论文
共 50 条
  • [41] OBSERVABLES IN RELATIVISTIC QUANTUM MECHANICS
    DAVIDON, WC
    EKSTEIN, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (11) : 1588 - &
  • [42] ELEMENTARY RELATIVISTIC QUANTUM MECHANICS
    DODD, JG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (12): : 1719 - &
  • [43] A NOTE ON RELATIVISTIC QUANTUM MECHANICS
    SNYDER, HS
    PHYSICAL REVIEW, 1948, 73 (05): : 524 - 524
  • [44] RELATIVISTIC INVARIANCE IN QUANTUM MECHANICS
    WIGNER, EP
    NUOVO CIMENTO, 1956, 3 (03): : 517 - 532
  • [45] Supersymmetric relativistic quantum mechanics
    Habara, Y
    Nielsen, HB
    Ninomiya, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (06): : 1333 - 1340
  • [46] On localisation in relativistic quantum mechanics
    Ruijgrok, TW
    THEORETICAL PHYSICS, FIN DE SIECLE, 1999, 539 : 52 - 74
  • [47] Euclidean relativistic quantum mechanics
    Wessels, V
    Polyzou, WN
    Few-Body Problems in Physics, 2005, 768 : 381 - 381
  • [48] NEW RELATIVISTIC QUANTUM MECHANICS
    MARIANI, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (12): : 1409 - +
  • [49] LANDAU,LD - QUANTUM MECHANICS-NON-RELATIVISTIC THEORY (COURSE OF THEORETICAL PHYSICS
    BURHOP, EHS
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 89 (565P): : 766 - &
  • [50] Applying Classical Mechanics Methods to Modelling Molecular Oscillations Problems of Quantum Mechanics
    Aldoshin, Gennady T.
    Yakovlev, Sergey P.
    2015 INTERNATIONAL CONFERENCE ON MECHANICS SEVENTH POLYAKHOVS READING, 2015,