Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity

被引:57
|
作者
Wittenberg, Leah A. [3 ]
Jonsson, Nina J. [4 ,5 ]
Chan, R. V. Paul [5 ]
Chiang, Michael F. [1 ,2 ]
机构
[1] Oregon Hlth & Sci Univ, Casey Eye Inst, Dept Ophthalmol, Portland, OR 97239 USA
[2] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97239 USA
[3] Univ British Columbia, Dept Ophthalmol & Visual Sci, Vancouver, BC V5Z 1M9, Canada
[4] Columbia Univ Coll Phys & Surg, Dept Ophthalmol, New York, NY 10032 USA
[5] Weill Cornell Med Coll, Dept Ophthalmol, New York, NY USA
基金
美国国家卫生研究院;
关键词
STANFORD-UNIVERSITY NETWORK; RETINAL VESSEL DIAMETER; POSTERIOR POLE VESSELS; ATHEROSCLEROSIS RISK; DETECT RETINOPATHY; OPTIMUM TIME; TORTUOSITY; TELEMEDICINE; WIDTH; ACCURACY;
D O I
10.3928/01913913-20110222-01
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Presence of plus disease in retinopathy of prematurity (ROP) is an important criterion for identifying ROP requiring treatment. Plus disease is defined by a standard published photograph selected more than 20 years ago by expert consensus. However, diagnosis of plus disease has been shown to be subjective and qualitative. Computer-based image analysis using quantitative methods has potential to improve the objectivity of plus disease diagnosis. The objective was to review the published literature involving computer-based image analysis for ROP diagnosis. The PubMed and Cochrane library databases were searched for the keywords "retinopathy of prematurity" AND "image analysis" AND/OR "plus disease." Reference lists of retrieved articles were searched to identify additional relevant studies. All relevant English-language studies were reviewed. There are four main computer-based systems-ROPtool (area under the receiver operating characteristic curve [AUROC], plus tortuosity 0.95, plus dilation 0.87), RISA (AUROC, arteriolar TI 0.71, venular diameter 0.82), Vessel Map (AUROC, arteriolar dilation 0.75, venular dilation 0.96), and CAIAR (AUROC, arteriole tortuosity 0.92, venular dilation 0.91)-attempting to objectively analyze vessel tortuosity and dilation in plus disease in ROP. Some show promise for identification of plus disease using quantitative methods. This has potential to improve the diagnosis of plus disease and may contribute to the management of ROP using both traditional binocular indirect ophthalmoscopy and image-based telemedicine approaches. [J Pediatr Ophthalmol Strabismus 2012;49:11-19.]
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条
  • [41] Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks
    Brown, James M.
    Campbell, J. Peter
    Beers, Andrew
    Chang, Ken
    Ostmo, Susan
    Chan, R. V. Paul
    Dy, Jennifer
    Erdogmus, Deniz
    Ioannidis, Stratis
    Kalpathy-Cramer, Jayashree
    Chiang, Michael F.
    JAMA OPHTHALMOLOGY, 2018, 136 (07) : 803 - 810
  • [42] Challenges of computer-based image analysis in histopathology
    Chibelushi, C. C.
    Sharp, B.
    Platt, C.
    JOURNAL OF PATHOLOGY, 2006, 210 : 29 - 29
  • [43] Image Analysis-Based Machine Learning for the Diagnosis of Retinopathy of Prematurity A Meta-analysis and Systematic Review
    Chu, Yihang
    Hu, Shipeng
    Li, Zilan
    Yang, Xiao
    Liu, Hui
    Yi, Xianglong
    Qi, Xinwei
    OPHTHALMOLOGY RETINA, 2024, 8 (07): : 678 - 687
  • [44] Real-Time, Computer-Assisted Quantification of Plus Disease in Retinopathy of Prematurity at the Bedside
    Cabrera, Michelle T.
    Freedman, Sharon F.
    Hartnett, Mary Elizabeth
    Stinnett, Sandra S.
    Chen, Bei Bei
    Wallace, David K.
    OPHTHALMIC SURGERY LASERS & IMAGING RETINA, 2014, 45 (06): : 542 - 548
  • [45] Deep learning for the identification of plus disease in retinopathy of prematurity
    Kalpathy-Cramer, Jayashree
    Campbell, J. Peter
    Kim, Sang
    Swan, Ryan
    Jonas, Karyn Elizabeth
    Ostmo, Susan
    Tian, Peng
    Kedarisetti, Dharanish
    Ioannidis, Stratis
    Erdogmus, Deniz
    Chan, R. V. Paul
    Chiang, Michael F.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [46] Experts do not agree when to treat retinopathy of prematurity based on plus disease
    Slidsborg, Carina
    Forman, Julie Lyng
    Fielder, Alistair R.
    Crafoord, Sven
    Baggesen, Kirsten
    Bangsgaard, Regitze
    Fledelius, Hans Callo
    Greisen, Gorm
    La Cour, Morten
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2012, 96 (04) : 549 - 553
  • [47] Comparison of expert graders to computer-assisted image analysis of the retina in retinopathy of prematurity
    Shah, Deepika N.
    Wilson, Clare M.
    Ying, Gui-shuang
    Karp, Karen A.
    Cocker, Kenneth D.
    Ng, Jeffrey
    Schulenburg, Ed
    Fielder, Alistair R.
    Mills, Monte D.
    Quinn, Graham E.
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2011, 95 (10) : 1442 - 1445
  • [48] Evaluation of computer-based retinopathy of prematurity (ROP) education for ophthalmology residents: a randomized, controlled, multicenter study
    Roohipoor, Ramak
    Alvarez, Rodrigo
    Brodowska, Katarzyna
    Yaseri, Mehdi
    Kloek, Carolyn
    Riazi, Mohamad
    Nourinia, Ramin
    Nildthah, Homayoun
    Prajna, N. Venkatesh
    Krishnan, Chandrasekharan
    Tuli, Sonal
    Green, Laura
    Srikumaran, Divya
    Shah, Ankoor S.
    Mantagos, Iason S.
    Chiang, Michael
    Chan, R. V. Paul
    Loewenstein, John
    JOURNAL OF AAPOS, 2019, 23 (02): : 86 - 88
  • [49] Computer Aided Diagnosis for Diabetic Retinopathy based on Fundus Image
    Zhou, Wei
    Wu, Chengdong
    Yu, Xiaosheng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9214 - 9219
  • [50] Vessel enhancement in smartphone fundus images to aid retinopathy of prematurity and plus disease diagnosis and classification
    Subramaniam, Ananya
    Douglass, Michael
    Orge, Faruk
    Can, Basak
    Monteoliva, Guillermo
    Fried, Evelin
    Schbib, Vanina
    Saidman, Gabriela
    Pena, Brenda
    Ulacia, Soledad
    Acevedo, Pedro
    Wilson, David
    MEDICAL IMAGING 2022: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2022, 12037