The robustness of a chaos-suppressing scenario against potential mismatches is experimentally studied through the universal model of a damped, harmonically driven two-well Duffing oscillator subject to non-harmonic chaos-suppressing excitations. We consider a second order analogous electrical circuit having an extremely simple two-well potential that differs from that of the standard two-well Duffing model, and compare the main theoretical predictions regarding the chaos-suppressing scenario from the latter with experimental results from the former. Our experimental results prove the high robustness of the chaos-suppressing scenario against potential mismatches regardless of the (constant) values of the remaining parameters. Specifically, the predictions of an inverse dependence of the regularization area in the control parameter plane on the impulse of the chaos-suppressing excitation as well as of a minimal effective amplitude of the chaos-suppressing excitation when the impulse transmitted is maximum were experimentally confirmed.