Suppressing homoclinic chaos for a class of vibro-impact oscillators by non-harmonic periodic excitations

被引:3
|
作者
Li, Shuangbao [1 ]
Xu, Rui [2 ]
Kou, Liying [2 ]
机构
[1] Civil Aviat Univ China, Res Inst Sci & Technol, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Suppressing chaos; Homoclinic chaos; Vibro-impact oscillator; Melnikov method; Non-harmonic periodic excitation; CONTROLLING NONLINEAR DYNAMICS; MELNIKOV METHOD; BIFURCATION SCENARIO; NONREGULAR DYNAMICS; INVERTED PENDULUM; NUMERICAL CONTROL; SYSTEM; SMOOTH; ATTRACTORS; ORBITS;
D O I
10.1007/s11071-024-09649-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a theoretical framework and carries out numerical verification for suppressing homoclinic chaos of a class of vibro-impact oscillators by adding non-harmonic periodic excitations. Based on the Melnikov method of non-smooth systems, the theoretical sufficient conditions for suppressing homoclinic chaos are obtained by eliminating the simple zeros of the corresponding Melnikov function while retaining the infinite terms of the Fourier expansion of the non-harmonic periodic excitations. Furthermore, the effects of waveforms, amplitudes, initial phases, and impulse of the non-harmonic periodic excitations on chaos suppression are studied, and the optimal parameters for suppressing chaos are analytically obtained. Finally, the effectiveness of theories is verified by the vibro-impact Duffing oscillator. Numerical results show that chaos induced by the transversal intersection of homoclinic orbits can be weakened or even suppressed by adding the non-harmonic periodic excitations, and when the impulse transmitted by the non-harmonic periodic excitations is maximum, the effective amplitude for suppressing chaos is minimal. Moreover, there may be some phenomena that do not have too good a quantitative agreement between theoretical predictions and numerical results.
引用
收藏
页码:10845 / 10870
页数:26
相关论文
共 27 条
  • [1] Suppressing Homoclinic Chaos for Vibro-Impact Oscillators
    Li, Shuangbao
    Chen, Jinzhuo
    Kou, Liying
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (15):
  • [2] Control and chaos for vibro-impact and non-ideal oscillators
    de Souza, Silvio L. T.
    Caldas, Ibere L.
    Viana, Ricardo L.
    Balthazar, Jose M.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2008, 46 (03) : 641 - 664
  • [3] Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos
    R. Chacón
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 30 : 207 - 210
  • [4] Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos
    Chacón, R
    EUROPEAN PHYSICAL JOURNAL B, 2002, 30 (02): : 207 - 210
  • [5] Resonance, bifurcations and chaos of periodic motion of a vibro-impact system
    Ding, WC
    Lin, M
    Xie, JJ
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND MECHANICS 2005, VOLS 1 AND 2, 2005, : 721 - 725
  • [6] Response analysis of vibro-impact systems under periodic and random excitations
    Sun, Yahui
    Chavez, Joseph Paez
    Liu, Yang
    Perlikowski, Przemyslaw
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [7] Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches
    Faustino Palmero
    Ricardo Chacón
    Nonlinear Dynamics, 2022, 108 : 2643 - 2654
  • [8] Unusual routes from periodic motion to chaos for a vibro-impact system
    Luo, GW
    Gao, P
    Yao, HM
    THIRD INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 2002, 4537 : 453 - 456
  • [9] Melnikov analysis of subharmonic motions for a class of bistable vibro-impact oscillators
    Li, Shuangbao
    Sun, Ran
    NONLINEAR DYNAMICS, 2023, 111 (02) : 1047 - 1069
  • [10] Melnikov analysis of subharmonic motions for a class of bistable vibro-impact oscillators
    Shuangbao Li
    Ran Sun
    Nonlinear Dynamics, 2023, 111 : 1047 - 1069