Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection

被引:12
|
作者
Lei, Yanlian [1 ]
Zhao, Yongshuang [1 ]
Zhang, Qiaoming [1 ]
Xiong, Zuhong [1 ]
Chen, Lixiang [1 ]
机构
[1] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum dot; Light-emitting diodes; Hole injection layer; Partially reduced graphene oxide; HOLE TRANSPORT LAYER; UV-OZONE TREATMENT; TURN-ON-VOLTAGE; HIGH-PERFORMANCE; GRAPHENE OXIDE; SMALL-MOLECULE; POLYMER;
D O I
10.1016/j.orgel.2020.105683
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Improving hole injection to get better charge balance is a critical issue for achieving high performance quantum dot light-emitting diodes (QLEDs) because the hole injection is generally more difficult than the electron injection in QLEDs. In this work, we report an effort to develop a useful and easy processing bilayer hole injection layer (HIL) that consists of UV-ozone-treated graphene oxide (partially reduced graphene oxide, rGO) and PEDOT:PSS. We have successfully demonstrated that such a hybrid bilayer HIL possesses the advantages of high conductivity, staircase energy-level alignment, and high quality interface contact, which effectively promotes hole injection efficiency in the solution-processed QLEDs. Highly efficient and bright red solution-processed QLEDs have been realized based on the rGO/PEDOT:PSS bilayer stepwise HIL, exhibiting maximum brightness of 89157 cd m(-2), current efficiency of 25.0 cd A(-1) and power efficiency of 10.9 lm W-1, respectively. Importantly, both high external quantum efficiency (EQE) (>10%) and brightness (>30000 cd m(-2)) have been attained simultaneously; the peak EQE of the QLEDs reached 17.3% with a brightness of similar to 60108 cd m(-2), showing a great potential for high-power lighting applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Achieving Highly Efficient and Stable Quantum Dot Light-Emitting Diodes With Interface Modification
    Tian, Fengqing
    Zhu, Yangbin
    Xu, Zhongwei
    Li, Baoyu
    Zheng, Xiaojing
    Ni, Ziquan
    Hu, Hailong
    Chen, Ying
    Zhuang, Jinyong
    Wu, Longjia
    Fu, Dong
    Yan, Xiaolin
    Li, Fushan
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (09) : 1384 - 1387
  • [32] Efficient quantum dot light-emitting diodes with ultra-homogeneous and highly ordered quantum dot monolayer
    Zhao, Denglin
    Zheng, Yueting
    Meng, Tingtao
    Zhu, Yangbin
    Jing, Jipeng
    Chen, Xiang
    Gao, Hongjin
    Mao, Chaomin
    Zheng, Wenchen
    Hu, Hailong
    Guo, Tailiang
    Li, Fushan
    SCIENCE CHINA-MATERIALS, 2022, 65 (03) : 757 - 763
  • [33] Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering
    Pan, Jun
    Quan, Li Na
    Zhao, Yongbiao
    Peng, Wei
    Murali, Banavoth
    Sarmah, Smritakshi P.
    Yuan, Mingjian
    Sinatra, Lutfan
    Alyami, Noktan M.
    Liu, Jiakai
    Yassitepe, Emre
    Yang, Zhenyu
    Voznyy, Oleksandr
    Comin, Riccardo
    Hedhili, Mohamed N.
    Mohammed, Omar F.
    Lu, Zheng Hong
    Kim, Dong Ha
    Sargent, Edward H.
    Bakr, Osman M.
    ADVANCED MATERIALS, 2016, 28 (39) : 8718 - 8725
  • [34] High-Resolution, Highly Transparent, and Efficient Quantum Dot Light-Emitting Diodes
    Luo, Chengzhao
    Zheng, Zhishuai
    Ding, Yanhui
    Ren, Zhenwei
    Shi, Hengfei
    Ji, Huifeng
    Zhou, Xin
    Chen, Yu
    ADVANCED MATERIALS, 2023, 35 (33)
  • [35] Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
    Won, Yu-Ho
    Cho, Oul
    Kim, Taehyung
    Chung, Dae-Young
    Kim, Taehee
    Chung, Heejae
    Jang, Hyosook
    Lee, Junho
    Kim, Dongho
    Jang, Eunjoo
    NATURE, 2019, 575 (7784) : 634 - +
  • [36] Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
    Yu-Ho Won
    Oul Cho
    Taehyung Kim
    Dae-Young Chung
    Taehee Kim
    Heejae Chung
    Hyosook Jang
    Junho Lee
    Dongho Kim
    Eunjoo Jang
    Nature, 2019, 575 : 634 - 638
  • [37] Very Bright and Efficient Microcavity Top-Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes
    Liu, Guohong
    Zhou, Xiang
    Chen, Shuming
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (26) : 16768 - 16775
  • [38] Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer
    Yang Li
    Dejiang Zhao
    Wei Huang
    Zhiqiang Jiao
    Lu Wang
    Qingyu Huang
    Peng Wang
    Mengna Sun
    Guangcai Yuan
    Nano Research, 2023, 16 : 10545 - 10551
  • [39] Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process
    Lin, Qingli
    Wang, Lei
    Li, Zhaohan
    Shen, Huaibin
    Guo, Lijun
    Kuang, Yanmin
    Wang, Hongzhe
    Li, Lin Song
    ACS PHOTONICS, 2018, 5 (03): : 939 - 946
  • [40] Deep-Red InP Core-Multishell Quantum Dots for Highly Bright and Efficient Light-Emitting Diodes
    Huang, Pan
    Liu, Xiaonan
    Jin, Geyu
    Liu, Fangze
    Shen, Huaibin
    Li, Hongbo
    ADVANCED OPTICAL MATERIALS, 2023, 11 (20)