Voltage Sag State Estimation using Compressive Sensing in Power Systems

被引:0
|
作者
Blanco-Solano, Jairo [1 ]
Petit-Suarez, Johann F. [1 ]
Ordonez-Plata, Gabriel [1 ]
Kagan, Nelson [2 ]
Almeida, C. F. M. [2 ]
机构
[1] Univ Ind Santander, Escuela Ingn Elect Elect & Telecomunicac, Bucaramanga, Colombia
[2] Univ Sao Paulo, Dept Engn Energia & Automacao Eletr, Sao Paulo, Brazil
来源
关键词
Compressive Sensing; Convex Optimization; Power Quality; State Estimation; Voltage Sag;
D O I
10.1109/ptc.2019.8810771
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a new formulation of the voltage sag state estimation problem based on compressive sensing theory. The growing economic losses for voltage sags have led to a search for new mathematical methods for voltage sags diagnosis. Several studies have been focused on optimization problems based on techniques that are inaccurate when faults with large impedance are considered. To overcome these limitations, we proposed a l(1)-based voltage sag state estimator (l(1)-VSSE). A limited number of voltage sag meters, sensing matrices using residual voltages per unit, and the solution of a l(1)-regularized least square problem (LSP) for each voltage sag detected, are novel characteristics of the proposed estimator. The l(1)-VSSE has been validated by using the IEEE30-bus power system and the IEEE69-bus distribution system. The outcomes validate the efficient performance in the voltage sags estimation and its robustness to the fault types, fault impedance, and meshed or radial systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Bad data identification in voltage sag state estimation of distribution system
    Zhang, Guo-Hui
    Wang, Bin
    Pan, Zhen-Cun
    Gao, Peng
    Dianwang Jishu/Power System Technology, 2010, 34 (08): : 69 - 73
  • [32] Impact of cyber attacks on distributed compressive sensing based state estimation in power distribution grids
    Rout, Biswajeet
    Natarajan, Balasubramaniam
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 142
  • [33] Blood Velocity Estimation Using Compressive Sensing
    Richy, Julien
    Friboulet, Denis
    Bernard, Adeline
    Bernard, Olivier
    Liebgott, Herve
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) : 1979 - 1988
  • [34] Applications of Compressed Sensing and Sparse Representations for State Estimation in Power Systems
    Rozenberg, Igal
    Levron, Yoash
    2015 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONIC SYSTEMS (COMCAS), 2015,
  • [35] Distribution systems state estimation using sparsified voltage profile
    Majidi, M.
    Etezadi-Amoli, M.
    Livani, H.
    Fadali, M. S.
    ELECTRIC POWER SYSTEMS RESEARCH, 2016, 136 : 69 - 78
  • [36] Multiple Target Localization and Power Estimation in Wireless Sensor Networks using Compressive Sensing
    Qian, Peng
    Guo, Yan
    Li, Ning
    Sun, Baoming
    2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2015,
  • [37] Voltage sag estimation in radial distribution systems with limited monitoring points
    Gahrooyi, Y. R.
    Golkar, M. A.
    2007 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, 2007, : 165 - 168
  • [38] Voltage Sag Estimation of Real Transmission Systems for Faults Along the Lines
    Di Mambro, E.
    Caramia, P.
    Varilone, P.
    Verde, P.
    2018 18TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER (ICHQP), 2018,
  • [39] Faulted zone determination using statistical modeling of voltage sag database in power distribution systems
    Ordonez Plata, Gabriel
    Cormane Angarita, Jorge
    Mora Florez, Juan
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2009, (47): : 197 - 208
  • [40] Low-voltage Power Line Noise Estimation Using Compressed Sensing
    Li, Qilin
    Xiao, Li
    Miao, Changsheng
    Xiang, Jinrui
    Hu, Zepeng
    Yue, Yang
    Qun, Wan
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 165 - 169