Towards the exact simulation using hyperbolic Brownian motion

被引:2
|
作者
Ida, Yuuki [1 ]
Imamura, Yuri [2 ]
机构
[1] Ritsumeikan Univ, 1-1-1 Noji Higashi, Kusatsu, Shiga 5258577, Japan
[2] Tokyo Univ Sci, Chiyoda Ku, 1-11-2 Fujimi, Tokyo 1020071, Japan
关键词
Parametrix; Hyperbolic; Brownian motion; SABR model; McKean's kernel; Exact simulation;
D O I
10.1007/s13160-017-0265-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, an expansion of the transition density of Hyperbolic Brownian motion with drift is given, which is potentially useful for pricing and hedging of options under stochastic volatility models. We work on a condition on the drift which dramatically simplifies the proof.
引用
收藏
页码:833 / 843
页数:11
相关论文
共 50 条
  • [41] Simulation of Telecommunication Traffic Using Statistical Models of Fractional Brownian Motion
    Pashko, Anatolii
    2017 4TH INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS-SCIENCE AND TECHNOLOGY (PIC S&T), 2017, : 414 - 418
  • [42] An asymptotic result of super-Brownian motion on hyperbolic space
    TANG JiashanDepartment of Mathematics
    Institute of Mathematics
    ChineseScienceBulletin, 1997, (15) : 1240 - 1244
  • [43] An asymptotic result of super-Brownian motion on hyperbolic space
    Tang, JS
    CHINESE SCIENCE BULLETIN, 1997, 42 (15): : 1240 - 1244
  • [44] Fractional telegraph-type equations and hyperbolic Brownian motion
    D'Ovidio, Mirko
    Orsingher, Enzo
    Toaldo, Bruno
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 131 - 137
  • [45] Using a geometric Brownian motion to control a Brownian motion and vice versa
    Lefebvre, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 69 (01) : 71 - 82
  • [46] Using a geometric Brownian motion to control a Brownian motion and vice versa
    Lefebvre, M.
    Stochastic Processes and their Applications, 69 (01):
  • [47] EXACT SIMULATION OF BROWNIAN DIFFUSIONS WITH DRIFT ADMITTING JUMPS
    Dereudre, David
    Mazzonetto, Sara
    Roelly, Sylvie
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (03): : A711 - A740
  • [48] Exact confidence intervals for the Hurst parameter of a fractional Brownian motion
    Breton, Jean-Christophe
    Nourdin, Ivan
    Peccati, Giovanni
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 416 - 425
  • [49] SOME EXACT EQUIVALENTS FOR THE BROWNIAN-MOTION IN HOLDER NORM
    BALDI, P
    ROYNETTE, B
    PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (04) : 457 - 484
  • [50] The Exact Solution of Fokker-Planck Equation for Brownian Motion
    Anaraki, P. Azimi
    AFRICAN REVIEW OF PHYSICS, 2012, 7 : 215 - 218