Pareto RBF networks based on multiobjective evolutionary computation

被引:0
|
作者
Kondo, N [1 ]
Hatanaka, T [1 ]
Uosaki, K [1 ]
机构
[1] Osaka Univ, Dept Informat & Phys Sci, Grad Sch Informat & Phys Sci, Suita, Osaka 5650871, Japan
关键词
RBF network; evolutionary multi-objective optimization; genetic algorithm; nonlinear system modeling;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, multi-objective structure selection of RBF networks based on evolutionary computation is considered. The RBF network structures are encoded to the chromosomes in GA. Then, they evolve toward Pareto optimum defined by some objective functions concerning with model accuracy, model complexity and connection weights. Some numerical simulation results indicate that the proposed approach can give Pareto optimum structures.
引用
收藏
页码:2177 / 2182
页数:6
相关论文
共 50 条
  • [41] Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms
    Batista, Lucas S.
    Campelo, Felipe
    Guimaraes, Frederico G.
    Ramirez, Jaime A.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 76 - 90
  • [42] Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach
    Zitzler, E
    Thiele, L
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (04) : 257 - 271
  • [43] GHEA2: A Non Pareto Evolutionary Technique for Multiobjective Optimization
    Rotar, Corina
    Ileana, Ioan
    BICS 2008: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTATIONAL METHODS USED FOR SOLVING DIFFICULT PROBLEMS-DEVELOPMENT OF INTELLIGENT AND COMPLEX SYSTEMS, 2008, 1117 : 12 - 20
  • [44] AN EVOLUTIONARY RBF NETWORKS BASED ON RPCL AND ITS APPLICATION IN FAULT DIAGNOSIS
    Zhao, Zeng-Shun
    Hou, Zeng-Guang
    Xu, De
    Tan, Min
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 1005 - +
  • [45] Pareto-optimal noise and approximation properties of RBF networks
    Eickhoff, Ralf
    Rueckert, Ulrich
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 993 - 1002
  • [46] Image thresholding based on Pareto multiobjective optimization
    Nakib, A.
    Oulhadj, H.
    Siarry, P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 313 - 320
  • [47] Deep neural networks compression learning based on multiobjective evolutionary algorithms
    Huang, Junhao
    Sun, Weize
    Huang, Lei
    NEUROCOMPUTING, 2020, 378 (378) : 260 - 269
  • [48] Tactical Fleet Mix Computation Using Multiobjective Evolutionary Optimization
    Stuive, Leanne
    Wesolkowski, Slawo
    Ghanmi, Ahmed
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [49] Evolutionary Approach to Multiparty Multiobjective Optimization Problems with Common Pareto Optimal Solutions
    Liu, Wenjie
    Luo, Wenjian
    Lin, Xin
    Li, Miqing
    Yang, Shengxiang
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [50] Multiobjective evolutionary computation for supersonic wing-shape optimization
    Obayashi, S
    Sasaki, D
    Takeguchi, Y
    Hirose, N
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2000, 4 (02) : 182 - 187