A method of fundamental solutions for two-dimensional heat conduction

被引:32
|
作者
Johansson, B. Tomas [1 ]
Lesnic, Daniel [2 ]
Reeve, Thomas [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
heat conduction; method of fundamental solutions; UNIQUE CONTINUATION; MFS;
D O I
10.1080/00207160.2010.522233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697-703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost.
引用
收藏
页码:1697 / 1713
页数:17
相关论文
共 50 条
  • [21] THE APPLICATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS TO A SIMULATION OF THE TWO-DIMENSIONAL SLOSHING PHENOMENON
    Kolodziej, Jan Adam
    Mierzwiczak, Magdalena
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2008, 3 (06) : 1087 - 1095
  • [22] Power-series method for two-dimensional heat conduction problems
    Fukuyo, K
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2005, 47 (03) : 239 - 255
  • [23] A posteriori regularization method for the two-dimensional inverse heat conduction problem
    Cheng, Wei
    Liu, Yi-Liang
    Zhao, Qi
    OPEN MATHEMATICS, 2022, 20 (01): : 1030 - 1038
  • [24] Numerical method for the solution of two-dimensional inverse heat conduction problems
    Reinhardt, H.-J.
    International Journal for Numerical Methods in Engineering, 1991, 32 (02): : 363 - 383
  • [25] An optimal modified method for a two-dimensional inverse heat conduction problem
    Qian, Zhi
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
  • [26] Analytical and numerical solutions of two-dimensional problems of heat conduction and electronic optics
    Kurbatova, G., I
    Vinogradova, E. M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2021, 17 (04): : 345 - 352
  • [27] Optimization of heat source distribution for two-dimensional heat conduction using bionic method
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 93 : 108 - 117
  • [28] Heat Conduction in Two-Dimensional Nonlinear Lattices
    Andrea Lippi
    Roberto Livi
    Journal of Statistical Physics, 2000, 100 : 1147 - 1172
  • [29] Heat conduction in a two-dimensional Ising model
    Casartelli, M.
    Macellari, N.
    Vezzani, A.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (02): : 149 - 156
  • [30] Heat conduction in two-dimensional nonlinear lattices
    Lippi, A
    Livi, R
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 1147 - 1172