STEIN'S METHOD AND THE RANK DISTRIBUTION OF RANDOM MATRICES OVER FINITE FIELDS

被引:23
|
作者
Fulman, Jason [1 ]
Goldstein, Larry [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
来源
ANNALS OF PROBABILITY | 2015年 / 43卷 / 03期
关键词
Stein's method; random matrix; finite field; rank;
D O I
10.1214/13-AOP889
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With Q(q,n) the distribution of n minus the rank of a matrix chosen uniformly from the collection of all n x (n + m) matrices over the finite field F-q of size q >= 2, and Q(q) the distributional limit of Q(q,n) as n -> infinity, we apply Stein's method to prove the total variation bound 1/8q(n+m+1) <= parallel to Q(q,n) - Qq parallel to TV <= 3/q(n+m+1). In addition, we obtain similar sharp results for the rank distributions of symmetric, symmetric with zero diagonal, skew symmetric, skew centrosymmetric and Hermitian matrices.
引用
收藏
页码:1274 / 1314
页数:41
相关论文
共 50 条