Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm

被引:58
|
作者
Li, Yue [1 ]
Chu, Xiaoquan [1 ]
Tian, Dong [1 ]
Feng, Jianying [1 ]
Mu, Weisong [1 ,2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Agr, Key Lab Viticulture & Enol, Beijing 100083, Peoples R China
关键词
K-means clustering algorithm; Particle swarm optimization algorithm; Adaptive parameter learning; Mixed data; Customer segmentation; BEE COLONY OPTIMIZATION;
D O I
10.1016/j.asoc.2021.107924
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved K-means algorithm and the adaptive particle swarm optimization (PSO) algorithm. The current PSO algorithm can easily fall into a local extremum; thus, adaptive learning PSO (ALPSO) is proposed to improve the optimization accuracy. On the basis of the analysis of population-based optimization, the inertia weight, learning factors, and the position update method are redesigned. To prevent the K-means clustering algorithm from depending on initial cluster centres, the ALPSO algorithm is used to optimize the K-means cluster centres (KM-ALPSO). Aimed at the issue of clustering the actual grape-customer consumption mixed dataset, factor analysis is used to extract numerical variables. We then propose a dissimilarity measurement method to cluster the mixed data. We compare ALPSO with several parameter update methods. We also conduct comparative experiments to compare KM-ALPSO on five UCI datasets. Finally, the improved KM-ALPSO (IKM-ALPSO) clustering algorithm is applied in customer segmentation. All results show that the three proposed methods outperform existing models. The experimental results also demonstrate the effectiveness and practicability of IKM-ALPSO for customer segmentation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Agriculture extra-green image segmentation based on particle swarm optimization and k-means clustering
    Zhao, Bo
    Song, Zhenghe
    Mao, Wenhua
    Mao, Enrong
    Zhang, Xiaochao
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2009, 40 (08): : 166 - 169
  • [32] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [33] Adaptive K-Means clustering algorithm
    Chen, Hailin
    Wu, Xiuqing
    Hu, Junhua
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [34] Customer Segmentation for Life Insurance in Iran Using K-means Clustering
    Khamesiana, Farzan
    Khanizadeha, Farbod
    Bahiraieb, Alireza
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 633 - 642
  • [35] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153
  • [36] Adaptive k-means clustering algorithm for MR breast image segmentation
    Hossam M. Moftah
    Ahmad Taher Azar
    Eiman Tamah Al-Shammari
    Neveen I. Ghali
    Aboul Ella Hassanien
    Mahmoud Shoman
    Neural Computing and Applications, 2014, 24 : 1917 - 1928
  • [37] Adaptive k-means clustering algorithm for MR breast image segmentation
    Moftah, Hossam M.
    Azar, Ahmad Taher
    Al-Shammari, Eiman Tamah
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Shoman, Mahmoud
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1917 - 1928
  • [38] Optimization of K-Means clustering Using Genetic Algorithm
    Irfan, Shadab
    Dwivedi, Gaurav
    Ghosh, Subhajit
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 157 - 162
  • [39] Hybridization of Particle Swarm Optimization with the K-Means Algorithm for Image Classification
    Hung, Chih-Cheng
    Wan, Li
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR IMAGE PROCESSING, 2009, : 60 - 64
  • [40] Analysis and Improvement of Semi-Supervised K-means Clustering Based on Particle Swarm Optimization Algorithm
    Sun Y.
    Xia Q.-Z.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2020, 43 (05): : 21 - 26