High accuracy particle analysis using sheathless microfluidic impedance cytometry

被引:71
|
作者
Spencer, Daniel [1 ,2 ]
Caselli, Federica [3 ]
Bisegna, Paolo [3 ]
Morgan, Hywel [1 ,2 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
[3] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci, I-00133 Rome, Italy
关键词
FLOW-CYTOMETRY; CELLS; SPECTROSCOPY; DIFFERENTIATION; DISCRIMINATION; DEVICE; BLOOD;
D O I
10.1039/c6lc00339g
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 mu m particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration.
引用
收藏
页码:2467 / 2473
页数:7
相关论文
共 50 条
  • [21] Microfluidic impedance cytometry of tumour cells in blood
    Spencer, Daniel
    Hollis, Veronica
    Morgan, Hywel
    BIOMICROFLUIDICS, 2014, 8 (06):
  • [22] Microfluidic Impedance-Based Flow Cytometry
    Cheung, Karen C.
    Di Berardino, Marco
    Schade-Kampmann, Grit
    Hebeisen, Monika
    Pierzchalski, Arkadiusz
    Bocsi, Jozsef
    Mittag, Anja
    Tarnok, Attila
    CYTOMETRY PART A, 2010, 77A (07) : 648 - 666
  • [23] High throughput cell cycle analysis using microfluidic image cytometry (FIC)
    Yoo, Hyun Ju
    Park, Jonghoon
    Yoon, Tae Hyun
    CYTOMETRY PART A, 2013, 83A (04) : 356 - 362
  • [24] A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
    Honrado, Carlos
    McGrath, John S.
    Reale, Riccardo
    Bisegna, Paolo
    Swami, Nathan S.
    Caselli, Frederica
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (16) : 3835 - 3845
  • [25] A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
    Carlos Honrado
    John S. McGrath
    Riccardo Reale
    Paolo Bisegna
    Nathan S. Swami
    Frederica Caselli
    Analytical and Bioanalytical Chemistry, 2020, 412 : 3835 - 3845
  • [26] Sheathless inertial particle focusing methods within microfluidic devices: a review
    Peng, Tao
    Qiang, Jun
    Yuan, Shuai
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 11
  • [27] Microfluidic particle separator utilizing sheathless elasto-inertial focusing
    Ahn, Sung Won
    Lee, Sung Sik
    Lee, Seong Jae
    Kim, Ju Min
    CHEMICAL ENGINEERING SCIENCE, 2015, 126 : 237 - 243
  • [28] Single-cell microfluidic impedance cytometry: a review
    Tao Sun
    Hywel Morgan
    Microfluidics and Nanofluidics, 2010, 8 : 423 - 443
  • [29] Digital signal processing methods for impedance microfluidic cytometry
    Tao Sun
    Cees van Berkel
    Nicolas G. Green
    Hywel Morgan
    Microfluidics and Nanofluidics, 2009, 6 : 179 - 187
  • [30] Single-cell microfluidic impedance cytometry: a review
    Sun, Tao
    Morgan, Hywel
    MICROFLUIDICS AND NANOFLUIDICS, 2010, 8 (04) : 423 - 443