Comparison of algorithms for dissimilarity-based compound selection

被引:159
|
作者
Snarey, M [1 ]
Terrett, NK
Willett, P
Wilton, DJ
机构
[1] Pfizer Cent Res, Sandwich, Kent, England
[2] Univ Sheffield, Western Bank, Krebs Inst Biomolec Res, Sheffield, S Yorkshire, England
[3] Univ Sheffield, Western Bank, Dept Informat Studies, Sheffield, S Yorkshire, England
来源
JOURNAL OF MOLECULAR GRAPHICS & MODELLING | 1997年 / 15卷 / 06期
关键词
D O I
10.1016/S1093-3263(98)00008-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Dissimilarity-based compound selection has been suggested as an effective method for selecting structural diverse subsets of chemical databases. This article reports a comparison of several maximum-dissimilarity and sphere-exclusion algorithms for dissimilarity-based selection. The effectiveness of the algorithms is quantified by the numbers of biological activity classes identified in subsets selected from the World Drugs Index database, and by the numbers of active compounds identified in feedback searches of this database. The experiments demonstrate the general effectiveness and efficiency of the MaxMin algorithm. (C) 1998 by Elsevier Science Inc.
引用
收藏
页码:372 / 385
页数:14
相关论文
共 50 条
  • [11] Dissimilarity-based representation for radiomics applications
    Cao, Hongliu
    Bernard, Simon
    Heutte, Laurent
    Sabourin, Robert
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 53 - 58
  • [12] DISSIMILARITY-BASED BIPOLAR SUPERVISED CLASSIFICATION
    Tinguaro Rodriguez, J.
    Montero, Javier
    Vitoriano, Begona
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 894 - 899
  • [13] Dissimilarity-based classification for vectorial representations
    Pekalska, Elzbieta
    Duin, Robert P. W.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 137 - +
  • [14] A Dissimilarity-based Drift Detection Method
    Pinage, Felipe A.
    dos Santos, Eulanda M.
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 1069 - 1076
  • [15] Dissimilarity-Based Regularized Learning of Charts
    Mishra, Prerna
    Kumar, Santosh
    Chaube, Mithilesh Kumar
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (04)
  • [16] Dissimilarity-based classification of chromatographic profiles
    António V. Sousa
    Ana Maria Mendonça
    Aurélio Campilho
    Pattern Analysis and Applications, 2008, 11 : 409 - 423
  • [17] Dissimilarity-based classification of chromatographic profiles
    Sousa, Antonio V.
    Mendonca, Ana Maria
    Campilho, Aurelio
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (3-4) : 409 - 423
  • [18] Dissimilarity-Based Multiple Instance Learning
    Sorensen, Lauge
    Loog, Marco
    Tax, David M. J.
    Lee, Wan-Jui
    de Bruijne, Marleen
    Duin, Robert P. W.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 129 - +
  • [19] Classifiers for dissimilarity-based pattern recognition
    Pekalska, E
    Duin, RPW
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 12 - 16
  • [20] Enhancing the dissimilarity-based classification of birdsong recordings
    Francisco Ruiz-Munoz, Jose
    Castellanos-Dominguez, German
    Orozco-Alzate, Mauricio
    ECOLOGICAL INFORMATICS, 2016, 33 : 75 - 84